Simulink® Design Verifier™
User's Guide

"

MATLAB&SIMULINK?

R2018a > ) MathWorks’



X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Verifier ™ User's Guide
© COPYRIGHT 2007-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

Prover, Prover Technology, Prover Plug-In and the Prover logo are trademarks or registered
trademarks of Prover Technology AB in Sweden, the United States and in other countries.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www.mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks . com/patents for more information.


https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

May 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017
March 2018

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 2007a+)
Revised for Version 1.1 (Release 2007Db)
Revised for Version 1.2 (Release 2008a)
Revised for Version 1.3 (Release 2008b)
Revised for Version 1.4 (Release 2009a)
Revised for Version 1.5 (Release 2009Db)
Revised for Version 1.6 (Release 2010a)
Revised for Version 1.7 (Release 2010Db)
Revised for Version 2.0 (Release 2011a)
Revised for Version 2.1 (Release 2011b)
Revised for Version 2.2 (Release 2012a)
Revised for Version 2.3 (Release 2012b)
Revised for Version 2.4 (Release 2013a)
Revised for Version 2.5 (Release 2013b)
Revised for Version 2.6 (Release 2014a)
Revised for Version 2.7 (Release 2014b)
Revised for Version 2.8 (Release 2015a)
Revised for Version 3.0 (Release 2015b)
Rereleased for Version 2.8.1 (Release
2015aSP1)

Revised for Version 3.1 (Release 2016a)
Revised for Version 3.2 (Release 2016b)
Revised for Version 3.3 (Release 2017a)
Revised for Version 3.4 (Release 2017Db)
Revised for Version 3.5 (Release 2018a)






Contents

Acknowledgments

Getting Started

1]

Simulink Design Verifier Product Description . ............ 1-2
Key Features . ........ ... ... 1-2
Simulink Design Verifier Block Library ................... 1-3
AnalyzeaModel ............ . .. ... . .. 1-4
About ThisExample . ........ ... ... ... . ... 1-4
OpentheModel ........ ... ... ... .. . ... 1-4
Generate Test Cases . ......cov vttt 1-6
Combine Test Cases . ......ov vt 1-24
Generate Test Cases for a Subsystem ................... 1-26
Analyze a Stateflow Atomic Subchart ................... 1-28
Analyze an Atomic Subchart Using the Simulink Design Verifier
Software .......... ... . ... 1-28
Basic Workflow for Simulink Design Verifier ............. 1-31

How the Simulink Design Verifier Software Works

2|

Analyze a Simple Model . .............................. 2-2



Model BIocks . ........ ... 2-4

Block Reduction . ........ ... .. ... ... . ... ... . 2-5
Inlined Parameters ................. ... .. ... .. ... ... 2-6
Large Models ... ........ . ... .. . . . i, 2-7
Handle Incompatibilities with Automatic Stubbing ...... ... 2-8
What [s Automatic Stubbing? ... ...................... 2-8
How Automatic Stubbing Works . ...................... 2-8
Analyze a Model Using Automatic Stubbing ............. 2-10
Analyze Export-Function Models ....................... 2-15
Analyze an Export-Function Model Driven by Scheduler .... 2-15
Limitations ... ....... . i 2-19
Nonfinite Data ................... ... ... ... ... ...... 2-20
Approximations . ........... ... ... .. ... ... . 2-21
Approximations During Model Analysis . ................ 2-21
Types of Approximations ............................ 2-21
Floating-Point to Rational Number Conversion ........... 2-22
Linearization of Two-Dimensional Lookup Tables for Floating-
Point Data Types ..........ccoi i, 2-22
Approximation of One- and Two-Dimensional Lookup Tables for
Integer and Fixed-Point Data Types . ................ 2-23
While LOOPS . .. oo 2-23
Reporting Approximations Through Validation Results . . . .. 2-25
Impact of Approximations on Objectives Status ........... 2-25
Identifying the Effect of Approximations Through Validation
Results .. ... 2-26
Logic Operations Short-Circuiting ...................... 2-29

vi Contents



Checking Compatibility with the Simulink Design
Verifier Software

3|

Check Model Compatibility ............................. 3-2
Compatibility with Simulink Design Verifier .............. 3-2
Run Compatibility Check . ........................... 3-2
Compatibility CheckResults .. ........................ 3-3
Supported and Unsupported Simulink Blocks in Simulink
Design Verifier ... ................ .. ... ... .. ... ... 3-10
Support Limitations for Simulink Software Features . ... ... 3-22
Support Limitations for Model Blocks ................... 3-25
Support Limitations for Stateflow Software Features . ... .. 3-27
ml Namespace Operator, ml Function, ml Expressions . . . .. 3-27
CorCH++O0perators ........ ... 3-27
CMath Functions ............ .. ... ... 3-27
Atomic Subcharts That Call Exported Graphical Functions
Outsidea Subchart .............. ... ... ..., 3-28
Atomic Subchart Input and Output Mapping ............. 3-28
Recursion and Cyclic Behavior ....................... 3-29
Custom CorC++Code . ... 3-31
Machine-Parented Data ............................ 3-31
Textual Functions with Literal String Arguments ......... 3-31
Support Limitations for MATLAB for Code Generation . .. .. 3-32
Unsupported MATLAB for Code Generation Features . .. ... 3-32
Support Limitations for MATLAB for Code Generation Library
Functions . ....... ... . .. . 3-32
Support Limitations and Considerations for S-Functions and
C/C++Code ............. ... ... . . 3-37
Enabling S-Functions in Simulink Design Verifier ......... 3-37
Support Limitations for S-Functions and C/C++ Code .. ... 3-37
Considerations for Enabling S-Functions and C/C++ Code in
Simulink Design Verifier ............ ... ... ... .... 3-38
Source Code Protection .................... ... ...... 3-38



viii

Contents

Working with Block Replacements

4

What Is Block Replacement? . .......................... 4-2

Block Replacement Effects on Test Generation ............ 4-3
Built-In Block Replacements .. ......................... 4-6
Template for Block Replacement Rules . .................. 4-8

Define Custom Block Replacements . .................... 9
Basic Workflow for Defining Custom Block Replacements . . .. 9
Specify Replacement Blocks . ......................... 4-9

0
0

Write Block Replacement Rules . ..................... 4-1
Replace Multiport Switch Blocks ... .................. 4-1
Execute Block Replacements .. ........................ 4-17
Configure Block Replacements ....................... 4-17
Replace BlocksinaModel .......................... 4-18

Specifying Parameter Configurations

d|

Parameter Constraint Values . .......................... 5-2
Parameter Configuration for Analysis ................... 5-2
Data Types in Parameter Configurations ................. 5-3
Parameters in Variant Subsystems .. ................... 5-4

Define Constraint Values for Parameters ................. 5-5
Find Parameters and Autogenerate Constraints ........... 5-6
Edit Parameter Constraints ........................... 5-9
Highlight Constrained Parameters in Model ............. 5-10

Specify Parameter Constraint Values for Full Coverage .. . .. 5-12
About ThisExample .......... ... ... ... ..., 5-12
Construct Example Model . .......................... 5-13
Parameterize Constant Block ........................ 5-14
Preload Workspace Variable . ........................ 5-14
Autogenerate Parameter Constraint ................... 5-15



Analyze Example Model . ........................... 5-17

Simulate Test Cases .. .....c v 5-19
Store Parameter Constraints in MATLAB Code Files . . .. ... 5-24
Export Parameter Constraintsto File . ................. 5-24
Import Parameter Constraints from File . ............... 5-26

Define Constraint Values for Parameters in MATLAB

Code Files ... ... ... . . 5-27
Template Parameter Configuration File . ................ 5-27
Syntax in Parameter Configuration Files ................ 5-27

Detecting Design Errors

6/

What Is Design Error Detection? ........................ 6-2
Derived Ranges in Design Error Detection ................ 6-3
Run a Design Error Detection Analysis ................... 6-4
Workflow for Detecting Design Errors . .................. 6-4
Understand the AnalysisResults ....................... 6-4
Review the Latest Analysis Results in the Model Explorer .... 6-7
Check For Design Errors using the Model Advisor ......... 6-7

Check a Model for Dead Logic .......................... 6-9
Analyze Models for Dead Logic . ..........ccovnn.. 6-9
Common Causes of Dead Logic ........................ 6-9
Dead Logic AnalysisResults . ......................... 6-9

Dead Logic Detection ................................ 6-10
Detect Dead LogicOnly ........... ... ... .. ... ...... 6-10
Detect Dead and Active Logic . ....................... 6-11

Detect Dead Logic Caused by an Incorrect Value .......... 6-12
Analyze the Fuel System Model ...................... 6-12
Review the Results and Trace to the Model .............. 6-13
Investigate the Cause of the Dead Logic ................ 6-14
Update the Input Constraint and Re-Analyze the Model . . .. 6-14

ix



Discrete-Time Integrator ...........................
Enabled Subsystem ............ .. ... ... . ... . .. ...,
Enabled and Triggered Subsystem ....................
Fen oo
For Iterator, For Iterator Subsystem ...................
If, If Action Subsystem . ............ ... ... .. ... ... ..
Library-Linked Objects . ............ ... .. ... ... .....
Logical Operator . ........... ... ..
MATLAB Function . ........ ... ... . ...
MIinMax . ..ot
Model ...
Multiport Switch .. ...... ... ... ..
RateLimiter ....... ... .
Relay . ...
Saturation ......... ... .. .
Stateflow Charts .. ...... ...
Switch . ... ..
SwitchCase, SwitchCase Action Subsystem ..............
Triggered Models . ........... ... .. .. ..
Triggered Subsystem . .............................
While Iterator, While Iterator Subsystem ...............

Detect Integer Overflow and Division-by-Zero Errors . . . ...

About This Example .. .............. .. ... .. .....
AnalyzetheModel ... ....... ... ... ... ... ... .. ...
Review the AnalysisResults .........................

Check for Specified Intermediate Minimum and Maximum
Signal Values . .............. . .. ... ... .. . ... ...

Overview of Specified Minimum and Maximum

Signal Values .. ...... ... . i
About ThisExample ......... ... ... ... ...
Create the Example Model ..........................
AnalyzetheModel .. ....... .. ... .. .. . . . . ...
Review the AnalysisResults .........................

Detect Out of Bound Array Access Errors .. ..............

Design Error Detection for Out of Bound Array Access . . . ..
Detect Out of Bound Array Access in Example Model . . . ...
Limitations of Support for Out of Bound Array Access Design

Error Detection . .......... .. ... . . .



Generating Test Cases

7

What Is Test Case Generation? . ......................... 7-2
TestCase Blocks .......... ... ... ... 7-2
Test Case Functions .. ............ .. ... ... . .. . ..... 7-2
Workflow for Test Case Generation ...................... 7-4
Generate Test Cases for Model Decision Coverage .......... 7-5
Construct the Example Model . ........................ 7-5
Check Compatibility of the Example Model ............... 7-6
Configure Test Generation Options . .................... 7-7
Analyze the Example Model . ......................... 7-8
Review AnalysisResults . ............................ 7-8
Customize Test Generation .......................... 7-17
Reanalyze the Example Model ....................... 7-19
Analyze Contradictory Models . ...................... 7-21
Use Test Generation Advisor to Identify Analyzable
Components ........... ... ... ... . .. i, 7-22
Test Generation AdviSOr . .. ... 7-22
Test Generation Advisor Requirements . ................ 7-24
Identify Analyzable Components ...................... 7-24
Analyze and Generate Tests for Model Components . ... ... 7-24
Manually Select Components for Testing . .............. 7-27
Generate Test Cases for Embedded Coder Generated Code .. 7-29
Generate Test Cases for Generated Code from the Block
Diagram .. ...ttt e 7-29
Generate Test Cases for Generated Code by Using the Simulink
Design Verifier APT ........... ... ... ... ... ... .... 7-30
Generate Test Cases for Generated Code from the Simulink Test
Test Manager .. ....... ...ty 7-30
Model Coverage Objectives for Test Generation ......... .. 7-32
DeCiSIOn . .\t 7-32
Condition . ...... ... i 7-32
MCDC .. 7-33
Relational Boundary ............. .. ... . ... 7-33

xi



xii

Contents

Extending Existing Test Cases

8|

When to Extend Existing TestCases . .................... 8-2
Common Workflow for Extending Existing Test Cases ....... 8-3
Extend Test Cases for Model with Temporal Logic .......... 8-4
Create Starting TestCase .. ....... ... ... 8-4
Log Starting Test Case . ............ .. 8-7
Extend Existing Test Cases ... .........c.ooiiin.. 8-8
Verify AnalysisResults . ............................ 8-10
Extend Test Cases for Closed-Loop System . .............. 8-12
Log Starting TestCase . ......... ... ... 8-12
Extend Existing Test Cases .. ...............un... 8-15
Extend Test Cases for Modified Model ................... 8-19
Create Starting Test Cases . .......... ... ... 8-19
Extend Existing TestCases .. ................un... 8-20

Achieving Test Cases for Missing Model Coverage

9

Generate Test Cases for Missing Coverage Data . ........... 9-2
Achieve Missing Coverage in Referenced Model . .......... 9-3
Programmatically Achieve Missing Coverage in Referenced
Model .. ... 9-3
Increase Coverage for Referenced Models in a Test
Harness .......... . 9-6
Missing Coverage in Subsystems and Model Blocks . . . .. .. 9-13
Achieve Missing Coverage in Closed-Loop Simulation
Model . . ... 9-14
Record Coverage Data forthe Model .................. 9-14
Find Test Cases for Missing Coverage . ................. 9-15



Modified Condition and Decision Coverage in Simulink Design

Verifier . . ... ... . . e 9-18
MCDC Definitions for Simulink Coverage and Simulink Design
Verifier .. ... 9-18

Verifying Model Components

10

What Is Component Verification? ....................... 10-2
Component Verification Approaches ................... 10-2
Simulink Design Verifier Tools for Component Verification . . 10-2

Functions for Component Verification ................... 10-4

Verify a Component for Code Generation ................ 10-6
About the Example Model . .......................... 10-6
Prepare the Component for Verification ................ 10-8
Record Coverage for the Component . ................. 10-9
Use Simulink Design Verifier Software to Record Additional

COVETAgE &« v v vttt ittt e e e 10-10
Combine the Harness Models . ...................... 10-12
Execute the Component in Simulation Mode ............ 10-13
Execute the Component in Software-in-the-Loop (SIL)

Mode . ..ov 10-13

Considering Specified Minimum and Maximum Values
for Inputs During Analysis

11|

Minimum and Maximum Input Constraints . ............. 11-2
Simulink Design Verifier Support for Specified Input Minimum
and Maximum Values ................... ... ....... 11-2

Limitations of Simulink Design Verifier Support for Specified
Minimum and Maximum Values .................... 11-3

xiii



xiv

Contents

Specify Input Ranges on Simulink and Stateflow

Elements ................ ... .. ... . .
Specify Input Ranges for Inport Blocks . ................
Specify Input Ranges for Simulink.Signal Objects . ........
Specify Input Ranges for Stateflow Data Objects .........
Specify Input Ranges for Subsystems ..................
Specify Input Ranges for Global Data Stores .............
Specify Input Ranges for Bus Elements . ................

Specify Input Ranges in sldvData Fields ................

Proving Properties of a Model

12

What Is Property Proving? ............................
Proof Blocks .. ... .
Proof Functions .. ........ ... i

Workflow for Proving Model Properties ..................

Prove PropertiesinaModel ...........................
About ThisExample . ......... ... .. ... .. ... ...
Construct Example Model . ..........................
Check Compatibility of Example Model .................
Instrument Example Model .. ........................
Configure Property-Proving Options ...................
Analyze Example Model .. .........................
Review AnalysisResults . ..........................
Customize Example Proof ... .......................
Reanalyze Example Model .........................
Review Results of Second Analysis . ..................
Analyze Contradictory Models . .....................
Prove Properties in a Large Model ...................

Prove System-Level Properties Using Verification Model . .
When to Use a Verification Model for Property Proving . . ..
Aboutthis Example . .......... ... ... ... ... .. ....
Understand the Verification Model .. .................
Prove the Properties of the Design Model ..............
Fix the Verification Model ............. ... ... ... ...



Prove Properties in a Subsystem . ..................... 12-29

Model Requirements ................................ 12-30
Basic Properties . ........... ... i 12-30
Temporal Properties . ........... ... ... ... . ... ... 12-32

13|

Highlighted Results on the Model ... ................... 13-2
Results Review with Model Highlighting ................ 13-2
Simulink Design Verifier Results Inspector .............. 13-2
Highlight Results on Model Automatically ............... 13-2
Green Highlightingon Model ........... ... ... ... ... 13-4
Red Highlightingon Model . .......... .. .. ... ... ..... 13-5
Orange Highlightingon Model ....................... 13-5
Gray Highlightingon Model ............ ... ... ... ... 13-8

Simulink Design Verifier Data Files . . .................. 13-10
Data File Generation ............................. 13-10
Contents of sldvData Structure . ..................... 13-10
Model Information FieldsinsldvData ................. 13-11
Simulate Models with Data Files ..................... 13-16
Load Results from Data Files . ...................... 13-16

Simulink Design Verifier Harness Models . .............. 13-17
Harness Model Generation ......................... 13-17
Create a HarnessModel . .......................... 13-17
Anatomy of a HarnessModel ....................... 13-18
Configuration of the Harness Model .................. 13-22
Simulate the Harness Model ........................ 13-23

Export Test Cases to Simulink Test . ... ................ 13-25
Overall Workflow . ........... .. ... .. ... .. ... 13-25
Test Case Generation Example . ..................... 13-25

Simulink Design Verifier Reports ...................... 13-28
Simulink Design Verifier Report Generation ............ 13-28
Create AnalysisReports . .............. ... .......... 13-28
FrontMatter ......... . .. . . . 13-29



xvi

Contents

Summary Chapter ............... .. ... .. ... ... ... 13-29

Analysis Information Chapter ....................... 13-29
Derived Ranges Chapter . .......................... 13-34
Objectives Status Chapters ......................... 13-35
Model Items Chapter .. .............. ... ... .. .... 13-48
Design Errors Chapter . ............... . ... ..... ... 13-49
Test Cases Chapter ............ .. 13-50
Properties Chapter . ............. . ... .. ... ... .. ... 13-55
Simulink Design Verifier Log Files . .................... 13-57
Review AnalysisResults . ............................ 13-59
View Active Results . ............. . ... ... ...... 13-59
Load Previous Results . ........................... 13-59
ExploreResults .. ........ ... ... . .. . ... 13-60

Analyzing Large Models and Improving Performance

14

Sources of Model Complexity .......................... 14-2
Analyze a Large Model . .............................. 14-3
Types of Large Model Problems ...................... 14-3
Summarize Model Hierarchy and Compatibility .......... 14-4
Use the Default Parameter Values ..................... 14-4
Modify the Analysis Parameters ...................... 14-6
Use the Large Model Optimization .................... 14-6
Stop the Analysis Before Completion .................. 14-6
Increase Allocated Memory for Analysis Report
Generation .............. ... ... .. ... ... . ., 14-8
Manage Model Data to Simplify the Analysis ............. 14-9
Simplify Data Types . ... ..ot e 14-9
ConstrainData ......... ... ... ... 14-9
Partition Model Inputs for Incremental Test Generation . . 14-12
Bottom-Up Approach to Model Analysis ................ 14-14



Extract Subsystems for Analysis ...................... 14-15

Overview of Subsystem Extraction ................... 14-15
sldvextract Function .............................. 14-15
Structure of the Extracted Model .................... 14-16
Analyze Subsystems That Read from Global Data Storage .. 14-16
Analyze Function-Call Subsystems . .................. 14-18
Logical Operations ................................. 14-21
Models with Large Verification State Space ............. 14-22
Countersand Timers ................................ 14-23
Prove Properties in Large Models . .................... 14-25
Find Property Violations While Designing Your Model . . . .. 14-25
Combine Proving Properties and Finding Proof Violations .. 14-26

Simulink Design Verifier Configuration Parameters

15

Simulink Design Verifier Options ....................... 15-2
Options in Configuration Parameters Dialog Box .......... 15-2
Design Verification Options Objects ................... 15-2
Command-Line Parameters for Design Verification

OptIONS . ..o e 15-2

Design Verifier Pane ... ............................. 15-11
Design Verifier Pane Overview . ..................... 15-12
Mode . ... e 15-12
Maximum analysis time ........................... 15-13
Display unsatisfiable test objectives . ................. 15-14
Automatic stubbing of unsupported blocks and functions . . 15-14
Support S-Functions in the analysis .................. 15-15
Use specified input minimum and maximum values ....... 15-16
Outputfolder ........ ... ... . i 15-16
Make output file names unique by adding a suffix ........ 15-17
Check Model Compatibility ......................... 15-18
Generate Tests/Detect Errors/Prove Properties .......... 15-18
Run additional analysis to reduce instances of rational

approximation ............. ... . 15-19

xvii



xviii

Contents

Additional options for S-Functions ...................

Design Verifier Pane: Block Replacements ..............
Block Replacements Pane Overview . .................
Apply block replacements . .............. ...,
List of block replacementrules ......................
File path of the output model . ......................

Design Verifier Pane: Parameters ......................
Parameters Pane Overview .........................
Enable parameter configuration .....................
Use parametertable ............. ... ... .. ... ......
Parameter configurationfile ..................... ...

Browse... .......

Clear ..........

Use ...........

Name ..........

Value ..........

Max ...........

Design Verifier Pane: Test Generation ..................
Test Generation Pane Overview .....................
Test generationtarget . ........ ... ... ... ... . ...
Model coverage objectives . ........................

Test conditions . . .
Test objectives . . .

Maximum testcasesteps . ........ ... .. ... ...
Test suite optimization ............................
Extend existing testcases ............... ... ... ...

Datafile ........

Ignore objectives satisfied by existing test cases .........
Ignore objectives satisfied in existing coverage data . .. ...

Coverage data file

15-19

15-20
15-20
15-20
15-21
15-22

15-23
15-24
15-24
15-26
15-27
15-28
15-28
15-28
15-28
15-28
15-29
15-29
15-29
15-30
15-31
15-31
15-32
15-32
15-33
15-33
15-33

15-34
15-35
15-36
15-36
15-37
15-38
15-39
15-40
15-41
15-42
15-43
15-43
15-44
15-45



Browse... . ...

Ignore objectives based on filter . ....................

Coverage filter
Browse... . ...

file ... .

Include relational boundary objectives . ...............
Floating point absolute tolerance ....................
Floating point relative tolerance .....................

Design Verifier Pane: Design Error Detection ... ....... ..
Design Error Detection Pane Overview ................

Dead logic . . .

Identify active logic . ............. ... .. .. ... ... ...
Integeroverflow . ....... ... . .. ...
Divisionby zero ............ ... ...
Check specified intermediate minimum and

maximum values . ...........ovviiininn.,
Out of bound array access . .............ivu...

Design Verifier Pane: Property Proving .................
Property Proving Pane Overview . ....................
Assertionblocks . ........ ... .. . .
Proof assumptions ............. ... .. .. ... . ...

Strategy .....

Maximum violation steps . ........... .. ... . ... .. ...

Design Verifier Pane: Results .........................
Results Pane Overview . .. .. ...,
Savetestdatatofile ........ ... ... . ... .. .. .. .. ...

Data file name

Include expected outputvalues ......................
Randomize data that do not affect the outcome ..........
Generate separate harness model after analysis .........

Harness model

filename .......... ... .. .. .. .. .. ...

Reference input model in generated harness ...........

Test File Name

Test Harness Name .. ... .. o ..

Design Verifier Pane: Report . ........................
Report Pane Overview ................ ... ... ......
Generate report of theresults . ......................
Generate additional report in PDF format ..............
Reportfilename ........... ... ... .. .. ...
Include screen shots of properties ...................

Display report

15-45
15-45
15-46
15-47
15-47
15-48
15-49

15-51
15-51
15-51
15-52
15-53
15-54

15-54
15-55

15-57
15-57
15-57
15-58
15-59
15-60

15-62
15-63
15-63
15-64
15-64
15-65
15-67
15-68
15-68
15-70
15-70

15-72
15-72
15-72
15-73
15-74
15-75
15-76

xix



Model Slicer

16|

Highlight Functional Dependencies . ................... 16-2
Refine Highlighted Model .. ........................... 16-9
Define a Simulation Time Window . .................... 16-9
ExcludeBlocks ........... . ... ... . . 16-13
Exclude Inputs of a Switch Block . ................... 16-17
Refine Dead Logic for Dependency Analysis ............. 16-21
Analyze the Dead Logic ........................... 16-21
Create a Simplified Standalone Model ................. 16-28
Highlight Active Time Intervals by Using Activity-Based Time
Slicing . .......... ... ... 16-29
Highlighting the Active Time Intervals of a Stateflow State or
Transition . ........c i 16-29
Activity-Based Time Slicing Limitations and
Considerations . ...........coiiiiiiiinnnnnnn., 16-37
Stateflow State and Transition Activity ................ 16-37
Simplify a Standalone Model by Inlining Content ........ 16-38
Workflow for Dependency Analysis .................... 16-42
Dependency Analysis Workflow . ..................... 16-42
Dependency Analysis Objectives .. ................... 16-43
Configure Model Highlight and Sliced Models ........... 16-45
Model Slice Manager . ...........c.iiiiiiiiinnn. 16-45
Model Slicer Options . .......... ... ..., 16-45
Storage Options .. ...t i 16-45
Refresh Highlighting Automatically .................. 16-46
Sliced Model Options .. ........ ... ... ... ........ 16-46
Trivial Subsystems . ........... ... .. ... . . .. 16-47
Inline Content Options . ........... ... ... ........ 16-47
Model Slicer Considerations and Limitations ............ 16-49
Model Highlighting and Model Editing ................ 16-49
Standalone Sliced Model Generation ................. 16-49
Sliced Model Considerations . ....................... 16-50

XX Contents



Port Attribute Considerations . ...................... 16-50

Simulation Time Window Considerations . ............. 16-51
Simulation-based Sliced Model Simplifications .......... 16-51
Starting Points Not Supported ...................... 16-53
Model Slicer Support Limitations for Simulink Software
Features ...... ... i 16-53
Model Slicer Support Limitations for Simulink Blocks .. ... 16-53
Model Slicer Support Limitations for Stateflow .......... 16-55
Using Model Slicer with Stateflow ..................... 16-57
Model Slicer Highlighting Behavior for Stateflow
Elements . .. ... 16-57

Using Model Slicer with Stateflow State Transition Tables . 16-58
Support Limitations for Using Model Slicer with Stateflo

W e e e 16-58
Isolating Dependencies of an Actuator Subsystem . ... ... 16-59
Choose Starting Points and Direction . ................ 16-59
View Precedents and Generate Model Slice ............ 16-61
Isolate Model Components for Functional Testing .. ...... 16-64
Isolate Subsystems for Functional Testing ............. 16-64
Isolate Referenced Model for Functional Testing ......... 16-68
Refine Highlighted Model by Using Existing .slslicex or Dead
LogicResults .................................... 16-74
Programmatically Resolve Unexpected Behavior in a Model
with Model Slicer . ................................ 16-77
Prerequisites . ....... ... ... 16-77
Find and Isolate the Area of the Model Responsible for
Unexpected Behavior ........................... 16-77
Investigate the Sliced Model and Debug the Source
Model . ... 16-83
Simplification of Variant Systems ..................... 16-89
Use the Variant Reducer to Simplify Variant Systems ... .. 16-89
Use Model Slicer to Simplify Variant Systems ........... 16-89
Refine Highlighted Model Slice by Using Model Slicer Data
Inspector . ........ ... . ... . .. . . ... 16-91
Investigate Highlighted Model Slice by Using Model Slicer Data
Inspector . ... ... .. e 16-91

xxi



xxii

Verification and Validation

17|

Test Model Against Requirements and Report Results . . . .. 17-2
Requirements Overview ...............ccuiiiiin.... 17-2
Test a Cruise Control Safety Requirement . .............. 17-2
Analyze a Model for Standards Compliance and Design
Errors . ... . 17-6
Standards and Analysis Overview ..................... 17-6
Check Model for Style Guideline Violations and Design
Errors . . ... 17-6
Perform Functional Testing and Analyze Test Coverage . . .. 17-9
Functional Testing and Coverage Analysis Overview . ... ... 17-9
Incrementally Increase Test Coverage Using Test Case
Generation . ............ i 17-9
Analyze Code and Test Software-in-the-Loop ............ 17-13
Code Analysis and Testing Software-in-the-Loop Overview . 17-13
Analyze Code for Defects, Metrics, and MISRA C:2012 .... 17-13
Module Verification and Testing Processor-in-the-Loop . . . 17-22
Module Verification and Testing Processor-in-the-
Loop OVEIVIEW . . ..ottt e e e 17-22
Testa ModelinReal Time ........................... 17-23
Real-Time Testing and Testing Production Models
OVEIVIEW . o ittt e e e 17-23
Glossary

Contents



Acknowledgments

The Simulink Design Verifier software uses Prover Plug-In® products from Prover®
Technology to generate test cases and prove model properties.

(=) oiigged in

xxiii






Getting Started

* “Simulink Design Verifier Product Description” on page 1-2
* “Simulink Design Verifier Block Library” on page 1-3

* “Analyze a Model” on page 1-4

* “Generate Test Cases for a Subsystem” on page 1-26

* “Analyze a Stateflow Atomic Subchart” on page 1-28

» “Basic Workflow for Simulink Design Verifier” on page 1-31



1 Getting Started

Simulink Design Verifier Product Description

1-2

Identify and isolate design errors and generate tests

Simulink Design Verifier uses formal methods to identify hidden design errors in models
without extensive simulation runs. It detects blocks in the model that result in integer
overflow, dead logic, array access violations, division by zero, and requirement violations.
For each error it produces a simulation test case for debugging.

Simulink Design Verifier generates test inputs for model coverage and custom objectives.
It also lets you augment and extend existing test cases. These test cases drive your model
to satisfy condition, decision, modified condition/decision (MCDC), and custom coverage
objectives.

The Model Slicer tool in Simulink Design Verifier isolates problematic behavior in a model
using a combination of dynamic and static analysis. It lets you highlight and trace
functional dependencies of ports, signals, and blocks, and slice a large model into smaller,
standalone models for analysis. You can view blocks affecting a subsystem output and
trace a signal path through multiple switches and logic. The Variant Reducer tool enables
you to simplify models containing multiple variants by creating sliced models based on
active variant configurations.

Support for industry standards is available through IEC Certification Kit (for IEC 61508
and ISO 26262) and DO Qualification Kit (for DO-178).

Key Features
» Test case input generation from functional requirements and model coverage
objectives, including condition, decision, and MCDC

* Detection of dead logic, integer and fixed-point overflows, array access violations,
division by zero, and violations of design requirements

» Verification blocks for modeling functional and safety requirements
* Property proving, with generation of violation examples for analysis and debugging

* Model Slicer for analyzing functional dependencies and problematic behavior in large
models

* Variant Reducer for creating sliced models based on active variant configurations

* Polyspace® and Prover formal verification engines for fixed-point and floating-point
models


https://www.mathworks.com/discovery/formal-verification.html
https://www.mathworks.com/products/iec-61508/
https://www.mathworks.com/products/do-178/

Simulink Design Verifier Block Library

Simulink Design Verifier Block Library

To open the Simulink Design Verifier block library, at the MATLAB® command prompt,
type sldvlib.

©-©@ Y

Chijectives and Constraints “erification Uilities
—_rrn_
1 Example
xxxxxxxxxxxxxxxxxxxxxx - Froperties

Temporal Operators

The Simulink Design Verifier block library has three categories of blocks:

* Objectives and Constraints — Blocks that define custom objectives and constraints

* Temporal Operators — Blocks that define temporal properties on Boolean signals

* Verification Utilities — Miscellaneous verification utilities

The block library also has a sublibrary, Example Properties, that includes examples of how

to specify common properties in your model. You can easily adapt these examples for use
in your models.

1-3



1 Getting Started

Analyze a Model

1-4

In this section...

“About This Example” on page 1-4
“Open the Model” on page 1-4
“Generate Test Cases” on page 1-6
“Combine Test Cases” on page 1-24

About This Example

The following sections describe an example model, Cruise Control Test Generation. This
example illustrates how to use Simulink Design Verifier to generate test cases that
achieve complete model coverage. Through this example, you learn how to analyze
models with Simulink Design Verifier and interpret the results.

Open the Model

To open the Cruise Control Test Generation model, at the MATLAB prompt, enter:

sldvdemo cruise control


matlab:sldvdemo_cruise_control

Analyze a Model

Simulink Design Verifier
Cruise Control Test Generation

1} = enable
enable
.2}  brake throt 1)
brake throt
3} et

set [0 100]

Actual speed

@7 —|speed
speed
.4} inc target —Il-

inc target
5 } | dec

dec

Controller

Run
{double-click)

Run Simulink Design Verifier

This example shows howto generate test cases that achieve complate model
coverage. By default, Simulink Design Verifier generates test cases that satisfy
objectives in the fewest steps. One ofthe test objectives forces the discrete integrator
inthe Pl controller to exceed its upper limit. When you run Simulink Design Verifier
without constraints, the limit is exceeded in a single step by forcing speed to be 500,
The constraint on speed limits the values in test cases between 0 and 100, This

forces the test casesto take several samples to exceed the integrator limit.
A AN N NNLA—I——

Togole Speed
Constraint
{tdouble-click)

View Options
{double-click)

Togaole Constraint  View Simulin k Design Verifier Options

1-5



1 Getting Started

1-6

Generate Test Cases

“Run Analysis” on page 1-6

“Generate Analysis Results” on page 1-8

“Highlight Analysis Results on Model” on page 1-9

“Generate Detailed Analysis Report” on page 1-12

“Create Harness Model” on page 1-19

“Simulate Tests and Produce Model Coverage Report” on page 1-23

Run Analysis

To generate test cases for the Cruise Control Test Generation model, open the model
window and double-click the block labeled Run.

Simulink Design Verifier begins analyzing the model to generate test cases, and the
Simulink Design Verifier Results Summary window opens. The Results Summary window
displays a running log showing the progress of the analysis.



Analyze a Model

E nulink Design Verifier Results Summarny: sldvdemo_cruise_con oy

Progress |

Objectives processed 22/32
Satisfied 22
Unsatisfiable 1]
Elapsed time 0:13

13-Jul-2017 17:11:10

Checking compatibility for test generation: model
'sldvdemno_cruise_control'

Compiling model...done

Checking compatibility...done

13-Jul-2017 17:11:11
'sldvdemo_cruise_control' is compatible for test generation

with Simulink Design Verifier.

Generating tests using compatibility results from 13-Jul-2017
17:11:11...

SATISFIED hd

Disable Highlighting Stop

If you need to terminate an analysis while it is running, click Stop. The software asks if
you want to produce results. If you click Yes, the software creates a data file based on the
results achieved so far. The path name of the data file appears in the Results Summary

window.

The data file is a MAT-file that contains a structure named sldvData. This structure
stores the data that the software gathers and produces during the analysis.

1-7



1 Getting Started

For more information, see “Simulink Design Verifier Data Files” on page 13-10.

Generate Analysis Results

When Simulink Design Verifier completes its analysis of the sldvdemo cruise control
model, the Results Summary window displays several options:

* Highlight analysis results on model

* Generate detailed analysis report

* Create harness model

* Simulate tests and produce a model coverage report

Note When you analyze other models, depending on the results of the analysis, you may
see a subset of these four options.

1-8



Analyze a Model

Simulink Design Verifier Results Surmmary: sldvdemo_cruise_con..

Progress |

Objectives processed 32/32

Satisfied 32
Unsatisfiable 0
Elapsed time 0:17

Test generation completed normally.
32/32 objectives are satisfied.

Results:

* Highlight analysis results on model

= View tests in Simulation Data Inspector

= Detailed analysis report: (HTML) (FDF)

* Create harness model

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Data saved in: sldvdemo cruise control sldvdata.mat
in folder: H:\Documents\MATLAB\sldv_output
‘\sldvdemo_cruise control

View Log Close

The sections that follow describe these options in detail.

Highlight Analysis Results on Model

In the Simulink Design Verifier Results Summary window, if you click Highlight analysis
results on model, the software highlights objects in the model in three different colors,

depending on the analysis results:

1-9



1 Getting Started

1-10

* “Green: Objectives Satisfied” on page 1-10
* “Orange: Objectives Undecided” on page 1-11
* “Red: Objectives Unsatisfiable” on page 1-11

When you highlight the analysis results on a model, the Simulink Design Verifier Results
Inspector opens. When you click an object in the model that has analysis results, the
Results Inspector displays the results summary for that object.

Green: Objectives Satisfied

Green outline indicates that the analysis generated test cases for all the objectives for
that block. If the block is a subsystem or Stateflow® atomic subchart, the green outline
indicates that the analysis generated test cases for all objectives associated with the child
objects.

For example, in the sldvdemo cruise control model, the green outline shows that
the PI controller subsystem satisfied all test objectives. The Results Inspector lists the two
satisfied test objectives for the PI controller subsystem.

v

Il
—® error throt——

Pl Controller
'D'} Results: sldvdermno_cruise_control — O X
w AFA
Back to summary

sldvdemo_cruise_control/Controller/PI Controller

enable logical value F SATISFIED - View test case
enable logical value T SATISFIED - View test case




Analyze a Model

Orange: Objectives Undecided

Orange outline indicates that the analysis was not able to determine if an objective was
satisfiable or not. This situation might occur when:

* The analysis times out

* The software satisfies test objectives without generating test cases due to:

* Automatic stubbing errors
* Limitations of the analysis engine

In the following example, the analysis timed out before it could determine if one of the
objectives for the Discrete-Time Integrator block was satisfiable.

i

'PE Simulink Design Verifier Results Inspector EI@

#at - &2

Back to summary - Close results

sldvdemo_cruise_control/ Controller/PI Controller/Discrete-
Time Integrator

integration result <= lower limit F SATISFIED - View test case
integration result <= lower limit T

integration result == upper limit F SATISFIED - View test case
integration result == upper limit T SATISFIED - View test case

Red: Objectives Unsatisfiable

Red outline indicates that the analysis found some objectives for which it could not
generate test cases, most likely due to unreachable design elements in your model.

In the following example, input 2 always satisfies the criterion for the Switch block, so the
Switch block never passes through the value of input 3.

1-11



1 Getting Started

v

—
Y
L

v

—»—
Switch

P )

P& Simulink Design Verifier Results Inspector EI@
a4 ~ B

Back to summary - Close results
sldvdemo_cruise_control_red_switch /Controller/Switch
logical trigger input false (outputis  UNSATISFIABLE
from 3rd input port)

logical trigger input true (outputis  SATISFIED - View test case
from 1st input port)

Generate Detailed Analysis Report

In the Simulink Design Verifier Results Summary window, if you click Generate detailed
analysis report, the software saves and then opens a detailed report of the analysis. The
path to the report is:

<current folder>/sldv_output/...
sldvdemo cruise control/sldvdemo cruise control report.html

The HTML report includes the following chapters.

1-12



Analyze a Model

Table of Contents

1. Summary

2. Analysis Information

. Test Objectives Status
. Model Items

. Test Cases

L | [

For a description of each report chapter, see:

* “Summary” on page 1-13

* “Analysis Information” on page 1-14

* “Test Objectives Status” on page 1-15
* “Model Items” on page 1-17

* “Test Cases” on page 1-18

Summary

In the Table of Contents, click Summary to display the Summary chapter, which
includes the following information:

* Name of the model

* Mode of the analysis (test generation, property proving, design error detection)
» Status of the analysis

* Length of the analysis in seconds

* Number of objectives satisfied

1-13



1 Getting Started

Chapter 1. Summary

Analysis Information

Model: sldvdemo_cruise control
Mode: TestGeneration

Status: Completed normally
Analysis Time: 7s

Objectives Status

Number of Objectives: 34
Objectives Satisfied: 34

Analysis Information

In the Table of Contents, click Analysis Information to display information about the
analyzed model and the analysis options.

1-14



Analyze a Model

Chapter 2. Analysis Information

Table of Contents

Model Information
Analysis Options
Constraints
Approximations

Model Information

File:
Version:
Time Stamp:
Author:

Analysis Options

Mode:

Test Suite Optimization:
Maximum Testcase Steps:
Test Conditions:

Test Objectives:

Model Coverage Objectives:

Maximum Analysis Time:
Block Replacement:
Parameters Analysis:

Parameters Configuration File:

Save Data:
Save Harness:
Save Report:

Test Objectives Status

sldvdemo_cruise control
1.56

Wed Jul 18 10:45:08 2012
The MathWorks Inc.

TestGeneration
CombinedObjectives
500 time steps
UseLocalSettings
UseLocalSettings
MCDC

60s

off

on
sldv_params_template.m
on

off

off

In the Table of Contents, click Test Objectives Status to display a table of satisfied
objectives. The following figure shows a partial list of the objectives satisfied in the Cruise
Control Test Generation model.

1-15



1 Getting Started

Chapter 3. Test Objectives Status
Table of Contents

Obijectives Satisfied

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

# Type Model Item Description Test Case
1 Decision Controller/Switch3 1og1ca] trigger input false (output is from 3rd 3
input port)
2 Decision Controller/Switch3 1oglca] trigger input true (output is from 1st 4
-— input port)
3 Decision Controller/Switch2 10g1ca] trigger input false (output is from 3rd 1
input port)
4 Decision Controller/Switch2 10g1ca] trigger input true (output is from 1st 8
input port)
5 Decision Controller/Switch1 1ogjca] trigger input false (output is from 3rd 5
input port)
6 Decision Controller/Switch1 1ogjca] trigger input true (output is from 1st 8
input port)
7 Condition Controller/Logical Operatorl Logic: input port 1 T 3
8 Condition Controller/Logical Operatorl Logic: input port 1 F 8
9 Condition Controller/Logical Operator2 Logic: input port 1 T 8
10 Condition Controller/Logical Operator2 Logic: input port 1 F 5
11 Condition Controller/Logical Operator2 Logic: input port 2 T 6
12 Condition Controller/Logical Operator2 Logic: input port 2 F 5
13 MCDC Controller/Logical Operator2 ESI%CI: ?ICDC expression for output with input 8

The Objectives Satisfied table lists the following information for the model:

* # — Objective number
* Type — Objective type

* Model Item — Element in the model for which the objective was tested. Click this link
to display the model with this element highlighted.

* Description — Description of the objective
+ Test Case — Test case that achieves the objective. Click this link for more information
about that test case.

In the row for objective 34, click the test case number (7) to display more information
about Test Case 7 in the report's Test Cases chapter.

1-16



Analyze a Model

Test Case 7

Summary

Length: 0.06 second (7 sample periods)
Objectives

Satisfied:

Objectives

Step |Time Model Item
7 0.06 Controller/PT Controller/Discrete-Time Integrator

Generated Input Data

. 0.01-
Time |0 0.05 0.06
Step |1 2-6 7
enable |1 1 1
brake |0 0 0
set 1 0 1
ine 1 1 -
dec 0 0 -
speed |97 0 0

Objectives
integration result >= upper limit T

In this example, Test Case 7 satisfies one objective, that the integration result be greater
than or equal to the upper limit T in the Discrete-Time Integrator block. The table lists the
values of the six signals from time 0 through time 0.06.

Model Items

In the Table of Contents, click Model Items to see detailed information about each item
in the model that defines coverage objectives. This table includes the status of the
objective at the end of the analysis. Click the links in the table for detailed information

about the satisfied objectives.

1-17



1 Getting Started

Chapter 4. Model Items

Table of Contents

Controller/Switch3

Controller/Switch2

Controller/Switchl

Controller/Logical Operatorl

Controller/Logical Operator2

Controller/Logical Operator

Controller/PI Controller

Controller/PI Controller/Discrete-Time Integrator

This section presents, for each object in the model defining coverage objectives, the list of objectives and their individual status at the end of the analysis. It
should match the coverage report obtained from running the generated test suite on the model, either from the harness model or by using the sldvruntests
command.

Controller/Switch3
View
s Test
H Type Description Status Case
logical trigger input
1 Decision false (output is from  |Satisfied §
3rd input port)
logical trigger input true
2 Decision (output is from 1st Satisfied 4
input port)
Controller/Switch2
View
- Test
H Type Description Status Case
logical trigger input
3 Decision false (output is from Satisfied 1
3rd input port)
logical trigger input true
4 Decision (output is from 1st Satisfied §
input port)
Test Cases

In the Table of Contents, click Test Cases to display detailed information about each
generated test case, including:

* Length of time to execute the test case

* Number of objectives satisfied

» Detailed information about the satisfied objectives
* Input data

For an example, see the section for Test Case 7 in “Test Objectives Status” on page 1-15.

1-18



Analyze a Model

Create Harness Model

In the Simulink Design Verifier Results Summary window, if you click Create harness
model, the software creates and opens a harness model named
sldvdemo cruise control harness.

Test Case 1 enzble

g

Inputs

ooC

Test Case Explanation

The harness model contains the following blocks:

Size Type
enzble
braks
s=t
i
dec

» iy

throt

target
target

Test Unit {copied from sldvdeme_ocruise_control)

* The Test Case Explanation block is a DocBlock block that documents the generated
test cases. Double-click the Test Case Explanation block to view a description of each

test case for the objectives that the test case satisfies.

1-19



1 Getting Started

F Editor - S\sca_sldvisldvdemeo_cruise_control_harness_testcases.txt

ds (g g Wk msert . fx [ v <@

New Open Save |1zl Compare =  Comment . = EHGDTDV Breakpoints

- = - é?rim - Indent - | &f |55 4 Find  ~ -

FILE EDIT NAVIGATE BREAKFOINTS

[sldvdemo_crui;e_control_harne;;_te;tc..‘ S

1 Te=st Case 1 (1 Cbkbjectiwves) -~
2 Parameter values: F
2

4 1. Controller/Switch2 - logical trigger input false (output is from 3rd input port) @ T=0.00

5

& Test Case 2 (3 Cbjectiwves)

7 Parameter values:

8

9 1. Controller/Logical Operator - Logic: input port 1 F @ T=0.00
10 2. Controller/Logical Operator - Logic: MCDC expression for output withl input port 1 F @ T=0.00
11 3. Controller/PI Controller - enable logical valus F § T=0.00
12
13 TIest Case 3 (3 Cbjectives)
14 Parameter values:
15 |
16 1. Controller/Logical Cperatorl - Logic: input port 1 T @ T=0.00 3
17 2. Controller/Logical Operator - Logic: input port 2 F @ T=0.00
18 3. Controller/Logical Operator - Logic: MCDC expression for output withl input port 2 F @ T=0.00
19
20 Test Case 4 (1 Cbjectives)
21 Parameter wvalues:
22
23 1. Controller/Switch3 - logical trigger input true (output is from 1st input port) & T=0.00
24
25 Test Case 5 (7 Objectives)
26 Parameter values:
27

=] 1. Controller/Switchl - logical trigger input false (output is from 3rd input port) @ T=0.00
23 2. Controller/Logical Operator2 - Logic: input port 1 F @ T=0.00 B
30 3. Controller/Logical Operator2 - Logic: input port 2 F @ T=0.00
=hl 4. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 1 F @ T=0.00
32 5. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 2 F @ T=0.00
33 6. Controller/Logical Operator - Logic: input port 3 F @ T=0.00
34 7. Controller/Logical Operator - Logic: MCDC expression for output with input port 3 F @ T=0.00
5
36 TIest Case 6 (2 Cbjectives)
37 Parameter values:
38
39 1. Controller/Logical Cperator2 - Logic: input port 2 T @ T=0.01
40 2. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 2 T @ T=0.01
41
42 Test Case 7 (1 Cbjectiwves)
43 Parameter values:
aa a2
Click and drag to move the document bar... Ln 25 Col 27 OVR

1-20




Analyze a Model

» The Test Unit block is a Subsystem block that contains a copy of the original model
that the software analyzed. Double-click the Test Unit block to view its contents and
confirm that it is a copy of the Cruise Control Test Generation model.

Note You can configure the harness model to reference the model that you are
analyzing using a Model block instead of using a subsystem. In the Configuration
Parameters dialog box, on the Design Verifier > Results pane, select Generate
separate harness model after analysis and Reference input model in generated
harness.

* The Inputs block is a Signal Builder block that contains the generated test case
signals. Double-click the Inputs block to open the Signal Builder dialog box and view
the eight test case signals.

* The Size-Type block is a subsystem that transmits signals from the Inputs block to the
Test Unit block. This block verifies that the size and data type of the signals are
consistent with the Test Unit block.

The Signal Builder dialog box contains eight test cases.
1 To view Test Case 7, from the Active Group list, select Test Case 7.
In Test Case 7 at 0.01 seconds:

* The enable and inc signals remain 1.

* The brake and dec signals remain 0.

* The set signal transitions from 1 to 0.

* The speed signal transitions from 100 to 0.

1-21



1 Getting Started

u Signal Builder (sldvdemo_cruise_contrel_harness/Inputs) *

File Edit Group Signal Help E
FEH {RE oo | T |EFRER » 0o | R E
Active Group; | Test Case 7 - @, E] E]
e VTTTTTTTTTTTT Coo Tt e TTTTTTTTTTTTTTT LTt e y
enable H : : | I . o
! i ! ! : ! i 1
| | | | | |
|?_"'"""'"'"."'""""""i"""'""'"'.'"'""""'"'."""'""""i"'""""""."""""""".
ot | | | | | |
1 i i i | i i |
............... L S ——
IS A A N AR O 4
b a a e . ]
n s s s s ;
e frenrnnnnnes oo beoneenenens onmenennenes et EESESEE :
Ei‘:::::::::::::*':::::::::::::::i:::::::::::::::'*::::::::::::::i:::::::::::::::i:::::::::::::: _______________ I
Ui_ E E E : E E :
_ | i i | i i |
mfi o B Rl LR, EEEEEEEE LR L EEEEEl EEEEEEEEEEEEEEE.
ag ' ' ' 1 1 1
R oo eenenennnes eenneneinane s eenneneennn :
b a a : a : |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.0
Time (sec)
Lett Pormnt Right Paimt

brake {shown)

Name: enable T: set (shown)

= ine {shown)

Index: 1 - - dec {shown)
’ speed {shown) i

Click to select point or segment, Shift+click to add points

enable (#1}) [YMin ¥Max]

1-22

In the Signal Builder block, the signal group satisfies the test objectives described in
the Test Case Explanation block.




Analyze a Model

To confirm that Simulink Design Verifier achieved complete model coverage, simulate
the harness model using all the test cases. In the Signal Builder dialog box, click the

all
Run all and produce coverage button ﬂ

The Simulink software simulates all the test cases. The Simulink Coverage™ software
collects coverage data for the harness model and displays a coverage report. The
report summary shows that the sldvdemo cruise control harness model
achieves 100% coverage.

Summary

1. sldvdemo crse conirol harness 8 100%

Model Hierarchy/Complexity:

.. Controller 7 100%
..... PI Controller 4 100%

D1
—
2. ... Test Unit (copied from sldvdemo cruise control) 7 100% s 100% ———]00% —
—
—

Simulate Tests and Produce Model Coverage Report

In the Simulink Design Verifier Results Summary window, if you click Simulate tests and
produce a model coverage report, the software simulates the model and produces a
coverage report for the sldvdemo cruise control model. The software stores the
report with the following name:

<current folder>/sldv output/sldvdemo cruise control/...

sldvdemo cruise control report.html

When you click Run all and produce coverage to simulate tests in the harness model,
you may see the following differences between this coverage report and the report you
generated for the model itself:

The harness model coverage report might contain additional time steps. When you
collect coverage for the harness model, the model stop time equals the stop time for
the longest test case. As a result, you might achieve additional coverage when you
simulate the shorter test cases.

1-23



1 Getting Started

1-24

* The cyclomatic complexity coverage for the Test Unit subsystem in the harness model
might be different than the coverage for the model itself due to the structure of the
harness model.

Combine Test Cases

If you prefer to review results that are combined into a smaller number of test cases, set
the Test suite optimization parameter to LongTestcases. When you use the
LongTestcases optimization, the analysis generates fewer, but longer, test cases that
each satisfy multiple test objectives. This optimization creates a more efficient analysis
and results that are easier to review.

Open the sldvdemo cruise control model and rerun the analysis with the
LongTestcases optimization:

Select Analysis > Design Verifier > Options.

N

In the Configuration Parameters dialog box, in the Select tree on the left side, under
the Design Verifier category, select Test Generation.

Set the Test suite optimization parameter to LongTestcases.

Click Apply and OK to close the Configuration Parameters dialog box.

In the sldvdemo cruise control model, double-click the block labeled Run.
In the Results Summary window, click Create harness model.

S AW

In the harness model, the Signal Builder block and the Test Case Explanation block
now contain one longer test case instead of the eight shorter test cases created
earlier in “Generate Test Cases” on page 1-6.



Analyze a Model

F Editor - S\sca_sldvisldvdemo_cruise_control_harness_testcase_long.tet

EDTOR cossickearal (A 5] & & 0 0 o

':D:' = E [l Find Files mset L & [5] ~ |52 g
Mew Open Save (5 Come=re = || Camment & L ENGDTD' Breakpoints
- = - EPrim - Indent - | i |f 4 Find = -
FILE EDIT NAVIGATE BREAKFOINTS
[;Idvdemn_crui;e_(nntrnl_hame;;_te:tc... S
1 Te=st Case 1 (34 Cbjectives)
2 Parameter values:
3
4 1. Controller/Switch3 - logical trigger input false (output is from 3rd input port) @ T=0.00
5 2. Controller/Switch3 - logical trigger input true (output is from 1lst input port) @ T=0.02
[ 3. Controller/Switch2 - logical trigger input false (output iz from 3rd input port) @ T=0.03
7 4. Controller/Switch? - logical trigger input true (output is from 1st input port) @ T=0.00
8 5. Controller/Switchl - logical trigger input false (output is from 3rd input port) @ T=0.04
9 6. Controller/Switchl - logical trigger input true (output is from lst input port) @ T=0.00
10 7. Controller/Logical Operatorl - Logic: input port 1 T @ T=0.02
11 8. Controller/Logical Cperatorl - Logic: input port 1 F @ T=0.00
2 9. Controller/Logical Operator2 - Logic: imput port 1 T @ T=0.00
13 10. Controller/Logical Cperator2 - Logic: input port 1 F @ T=0.04
14 11. Controller/Logical Cperator? - Logic: input port 2 T @ T=0.07
15 12. Controller/Logical Cperator? - Logic: input port 2 F @ T=0.04
16 13. Controller/Logical Cperator2 - Logic: MCDC expression for output with input port 1 T @ T=0.00
17 14. Controller/Logical Cperator2 - Logic: MCDC expression for output with input port 2 T @ T=0.07
18 15. Controller/Logical Operator? - Logic: MCDC expression for output with input port 1 F @ T=0.04
1% 16. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 2 F @ T=0.04
2 17. Controller/Logical Cperator - Logic: input port 1 T 8 T=0.00
21 18. Controller/Logical Operator - Logic: input port 1 F @ T=0.01
22 18. Controller/Logical Operator - Logic: input port 2 T @ T=0.00
23 20. Controller/Logical Cperator - Logic: input port 2 F § T=0.02
24 21. Controller/Logical Operator - Logic: input port 3 T @ T=0.00
25 22. Controller/Logical Operator - Logic: input port 3 F @ T=0.05
26 23. Controller/Logical Cperator - Logic: MCDC expression for output with input port 1 T @ T=0.00
27 24. Controller/Logical Operator - Logic: MCDC expression for output with input port 2 T @ T=0.00
28 25. Controller/Logical Operator - Logic: MCDC expression for output with input port 3 T @ T=0.00
29 26. Controller/Logical Cperator - Logic: MCDC expression for output with input port 1 F @ T=0.01
30 27. Controller/Logical Operator - Logic: MCDC expression for output with input port 2 F @ T=0.02
31 28. Controller/Logical Cperator - Logic: MCDC expression for output with input port 3 F @ T=0.05
2 28. Controller/PI Controller - enable logical walue F @ T=0.01
33 30. Controller/PI Controller - enable logical value T @ T=0.00
34 31. Controller/PI Controller/Discrete-Time Integrator - integration result <= lower limit F @ T=0.00
35 32. Controller/PI Controller/Discrete-Time Integrator - integration resmlt <= lower limit T @ T=0.14
36 33. Controller/PI Controller/Discrete-Time Integrator - integration result >= upper limitc F @ T=0.00
37 34. Controller/PI Controller/Discrete-Time Integrator - integration result >= upper limit T @ T=0.26
plain text file Ln Col 1 OVR

The analysis still satisfies all 34 objectives.

Click Run all and produce coverage to collect coverage.

1-25




1 Getting Started

Generate Test Cases for a Subsystem

1-26

You can analyze a subsystem within a model. This technique is good for large models,
where you want to review the analysis in smaller, manageable reports.

This example shows how to analyze the Controller subsystem in the
sldvdemo cruise control model.

1

Open the example model:

sldvdemo cruise control

Right-click the Controller subsystem, and select Design Verifier > Enable ‘Treat as
Atomic Unit’ to Analyze.

The Function Block Parameters dialog box for the Controller subsystem opens.
Select Treat as atomic unit.

An atomic subsystem executes as a unit relative to the parent model. Subsystem
block execution does not interleave with parent block execution. You can extract
atomic subsystems for use as standalone models.

You must set the Treat as atomic unit parameter to analyze a subsystem with
Simulink Design Verifier.

After you set the parameter, other parameters become available, but you can ignore
them.
Click OK to close the dialog box.

Select File > Save As and save the Cruise Control Test Generation model with a new
name.

To start the subsystem analysis and generate test cases, right-click the Controller
subsystem, and select Design Verifier > Generate Tests for Subsystem.

The Simulink Design Verifier software analyzes the subsystem. When the analysis is
complete, view the analysis results for the Controller subsystem by clicking one of
the following options:

* Highlight analysis results on model

* Generate detailed analysis report

* Create harness model



Generate Test Cases for a Subsystem

* Simulate tests and produce a model coverage report

Note After processing a certain number of objectives, if the analysis stops, or if the
analysis times out, you can use the Test Generation Advisor to better understand
which subsystems are causing the problem. For more information, see “Use Test
Generation Advisor to Identify Analyzable Components” on page 7-22.

Review the results of the subsystem analysis and compare them to the results of the
full-model analysis described in “Analyze a Model” on page 1-4:

* The subsystem analysis analyzes the Controller as a standalone model.

* The Controller subsystem contains all the test objectives in the Cruise Control
Test Generation model. Both analyses generate the same test cases.

1-27



1 Getting Started

Analyze a Stateflow Atomic Subchart

1-28

In a Stateflow chart, an atomic subchart is a graphical object that allows you to reuse the
same state or subchart across multiple charts and models. You can use Simulink Design
Verifier to analyze atomic subcharts individually. You do not have to analyze the chart that
contains the atomic subchart, or the model that contains the chart.

If you are having problems analyzing a large model, analyzing an atomic subchart in a
controlled environment is helpful. As described in “Bottom-Up Approach to Model
Analysis” on page 14-14, by analyzing atomic subcharts or other components in the
model hierarchy individually, you can analyze a model to:

* Solve problems that slow down or prevent test generation, property proving, or design
error detection.

* Analyze model components that are unreachable in the context of the container model
or chart.

Note For more information about atomic subcharts, see “What Is an Atomic Subchart?”
(Stateflow).

Analyze an Atomic Subchart Using the Simulink Design
Verifier Software

The sf_atomic_sensor pair example model models a redundant sensor pair using
atomic subcharts. This example analyzes the Sensorl subchart in the
RedundantSensors chart.

1 Openthe sf atomic sensor pair example model:
sf atomic_sensor pair

This model demonstrates how to model a simple redundant sensor pair using atomic
subcharts.

2 Double-click the RedundantSensors chart to open it.


matlab:sf_atomic_sensor_pair

Analyze a Stateflow Atomic Subchart

ink Sensori

[Sensorl.inFailed()]

ink Sensor?

[SensorZ.inF ailed()]
O

Alarm
en, du: y =0;

This Stateflow chart has two atomic subcharts:

e Sensorl
e Sensor?2

To analyze the Sensorl subchart using Simulink Design Verifier, right-click the
subchart and select Design Verifier > Generate Tests for Subchart.

During the analysis, the software creates a Simulink model named Sensor1 that
contains the Sensorl subchart. The new model contains Inport and Outport blocks
that respectively correspond to the data objects u and y in the subchart.

1» | Il Ot 1 1)

Sensor

1-29



1 Getting Started

The software saves the new model and other files generated by the analysis in:

<current folder>/sldv_output/Sensorl
4  When the analysis is complete, view the analysis results for the Sensorl subchart by
clicking one of the following options:
+ Highlight analysis results on model
* Generate detailed analysis report
* Create harness model
* Simulate tests and produce a model coverage report

1-30



Basic Workflow for Simulink Design Verifier

Basic Workflow for Simulink Design Verifier

The basic workflow for analyzing your model is described in the following steps, with links

to related documentation.

Step |Action See...

1 Check the compatibility of your model. “Check Model Compatibility” on page 3-2

2 If you want to work around compatibility |¢ “What Is Block Replacement?” on page 4-
limitations in your model or customize 2
model elements for analysis, you can use |, “Parameter Constraint Values” on page 5-
Simulink Design Verifier block 2
replacement rules. If you want to generate
additional values for parameters in your
model during analysis, use Simulink
Design Verifier parameter configurations.

3 Set Simulink Design Verifier options. “Simulink Design Verifier Options” on page 15-

2

4 If you plan to generate test cases or prove |¢ “What Is Design Error Detection?” on page
properties in your model, first run design 6-2
error detection for integer overflow and |, “petect Integer Overflow and Division-by-
division by zero. Zero Errors” on page 6-24

5 Analyze your model to: * “Run a Design Error Detection Analysis” on

* Detect design errors
* Generate test cases
* Prove properties

page 6-4

*  “Workflow for Test Case Generation” on
page 7-4

* “Workflow for Proving Model Properties”
on page 12-4

Generate the results.

“Generate Analysis Results” on page 1-8

Interpret the results.

“Results Interpretation and Use”

1-31






How the Simulink Design Verifier

Software Works

“Analyze a Simple Model” on page 2-2

“Model Blocks” on page 2-4

“Block Reduction” on page 2-5

“Inlined Parameters” on page 2-6

“Large Models” on page 2-7

“Handle Incompatibilities with Automatic Stubbing” on page 2-8
“Analyze Export-Function Models” on page 2-15

“Nonfinite Data” on page 2-20

“Approximations” on page 2-21

“Reporting Approximations Through Validation Results” on page 2-25
“Logic Operations Short-Circuiting” on page 2-29



2 How the Simulink Design Verifier Software Works

Analyze a Simple Model

AND ..@

Yy

Logical out
L1 3} = Oper ator 1
HOR >
in L v l—_l
Logical Memory
Dperator

This simple model includes two Logical Operator blocks and a Memory block. The
persistent information in this model is limited to the Boolean value of the Memory block.
The input to the model is a single Boolean value. The following table describes the
complete behavior of the model, including the behavior that results from an arbitrarily
long sequence of inputs.

# |Input Memory Value |Output of XOR Block = |Output of AND Block
Next Memory Value

1 false false false false

2 true false true false

3 false true true false

4 true true false true

The test objective is to generate test cases that result in a true output. A true output
results when the input is true, and the output of the Memory block is true. Test case
generation follows a path to reach this condition, which depends on the initial model
conditions:

» If the initial memory value is true, the test case is a single time step where the input
is true.
+ If the initial memory value is false, the test case is two time steps:
1 The input value is true and the memory value is false (row 2). Thus, the output of
the XOR block is true, making the memory value true.

2 Now that the input value and memory value are both true (row 4), the output is
true, and the analysis achieves the test objective.

2-2



Analyze a Simple Model

An infinite number of test cases can cause the output to be true, and regardless of the
state value, the output can be held false for an arbitrary time before making it true. When
Simulink Design Verifier searches, it returns the first test case it encounters that satisfies
the objective. This case is invariably the simulation with the fewest time steps. Sometimes
you may find this result undesirable because it is unrealistic or does not satisfy some
other test requirement.

The same basic principles from this example apply to property proving and test case
generation. During test case generation, option parameters explicitly specify the search
criteria. For example, you can specify that Simulink Design Verifier find paths for all block
outputs or find only those paths that cause the block output to be true.

During a property proving analysis, you specify a functional requirement, or property, that
you want Simulink Design Verifier to prove, for example, that the output is always true. If
the search completes without finding a path that violates the property, the property is
proven. If the software finds a path where the output is false, it creates a counterexample
that causes the output to be false.

During an error detection analysis, Simulink Design Verifier identifies objectives where
data overflow or division-by-zero errors can and cannot occur. The analysis creates test
cases that demonstrate how the errors can occur.

2-3



2 How the Simulink Design Verifier Software Works

Model Blocks

2-4

If your model contains Model blocks that reference external models, test creation occurs
for the top-level model, considering each referenced model in its execution context.

If multiple Model blocks reference the same model, generated tests attempt to satisfy test
objectives for each instance of the referenced model in its individual context in the top-
level model. If you have three Model blocks that reference a certain model, the analysis
produces results for all three instances.

If you collect coverage using the generated test cases, the cumulative coverage reflects
the multiple instances of the same referenced model. The simulation produces one set of
coverage results for each referenced model; if you have three Model blocks that reference
a certain model, the simulation produces one set of results for that referenced model.

For example, consider a top-level model with three Model blocks referencing the same
model. The referenced model has three test objectives. Analyzing the top-level model
produces nine test objectives. If you simulate the model with the nine test cases, the
coverage results for that referenced model specify three test objectives.



Block Reduction

Block Reduction

Block reduction achieves faster execution during model simulation and in generated code.
When block reduction is enabled, certain block groups can be collapsed into a single
block, or even removed entirely.

With Simulink Design Verifier, block reduction happens automatically, and blocks in
unused code paths are eliminated from the model. Simulink Design Verifier results do not
include test objectives for blocks that have been reduced.

Consider the Switch block in the following model.

In1 4\
; | D

|l
Ot

Cor—

Switch

For this Switch block, the control input is always 0. If the Criteria for passing first
input block parameter is u2 ~= 0, the Switch block always passes the third input
through to the output port. When you analyze this model, Simulink Design Verifier
removes the Switch block from the model and does not report any test objectives for the
Switch block.

For more information about block reduction, see the description of the “Block reduction”
(Simulink) parameter.

2-5



2 How the Simulink Design Verifier Software Works

Inlined Parameters

2-6

Setting Default parameter behavior to Inlined on the Optimization pane of the
Configuration Parameters dialog box optimizes Simulink models by transforming tunable
parameters into constant values. For example, suppose you have a Gain block whose Gain
parameter is a, where a is defined in the model workspace. During code generation,
Simulink converts that Gain parameter to a constant value, as defined in the workspace.

When Simulink Design Verifier translates a model, it transforms all tunable parameters in
the model into constant values, even if you set Default parameter behavior to
Inlined.

To tune parameters for an analysis, define parameter values in a parameter configuration
file and specify that file in the Configuration Parameters > Design Verifier >
Parameters pane to apply those parameter values during the analysis. For example, to
constrain the values of a Gain parameter a to integer values from 4 to 10, in the
parameter configuration file, specify the following:

params.a = int8([4 10]);
The analysis generates the specified values and returns results for those values.

For detailed information about how to specify parameters during a Simulink Design
Verifier analysis, see “Define Constraint Values for Parameters” on page 5-5.



Large Models

Large Models

In larger, more complicated models, Simulink Design Verifier uses mathematical
techniques to simplify the analysis:

+ It identifies portions of the model that do not affect the desired objectives.
» It discovers relationships within the model that reduce the complexity of the search.
* It reuses intermediate results from one objective to another.

In this way, the problem is reduced to a search though the logical values that describe
your model.

For detailed information about analyzing large models, see “Analyze a Large Model” on
page 14-3.

2-7



2 How the Simulink Design Verifier Software Works

Handle Incompatibilities with Automatic Stubbing

2-8

In this section...

“What Is Automatic Stubbing?” on page 2-8
“How Automatic Stubbing Works” on page 2-8

“Analyze a Model Using Automatic Stubbing” on page 2-10

What Is Automatic Stubbing?

Automatic stubbing lets you analyze a model that contains objects that Simulink Design
Verifier does not support.

When you enable the automatic stubbing option (it is enabled by default), the software
considers only the interface of the unsupported objects, not their actual behavior. This
technique allows the software to complete the analysis. However, the analysis may
achieve only partial results if any unsupported model element affects the simulation
outcome.

How Automatic Stubbing Works

If you enable automatic stubbing, when the Simulink Design Verifier analysis comes to an
unsupported block, the software “stubs” that block. The analysis ignores the behavior of
the block, and as a result, the block output can take any value.

Stub Trigonometric Function Block

The Simulink Design Verifier software does not support Trigonometric Function blocks
when the Function parameter is set to acos, such as the one in the following graphic.

h

L1 3} | 3oos - |:|
out_signal

n_signal
In1 =8

BCO5 Soope

When stubbing this block during analysis, out signal can take any value, with the
following results.




Handle Incompatibilities with Automatic Stubbing

Analysis Model Result of Stubbing out_signal

Design error detection » If a design-error objective that depends on out signal
is proven valid, that objective is valid for all simulations.
In this case, the stubbing did not affect the results of the
analysis.

» If a design-error objective that depends on out signal
is falsified, the analysis cannot create a test case. The
analysis cannot determine which input to the stubbed
block produces the output that falsifies the objective.

Test case generation + If a test objective that depends on the value of

out signal is satisfied, the analysis cannot create a test
case. The analysis cannot determine which input to the
stubbed block produces the output that satisfies the
objective.

» If a test objective that depends on the value of
out signal is unsatisfiable, there is no simulation that
can satisfy that objective. In this case, the stubbing did
not affect the results of the analysis.

Property proving » If a proof objective that depends on out signal is
proven valid, that objective is valid for all simulations. In
this case, the stubbing did not affect the results of the
analysis.

» If a proof objective that depends on out signal is
falsified, the analysis cannot create a counterexample.
The analysis cannot determine which input to the stubbed
block produces the output that falsifies the objective.

Stub S-Function Block Containing Function-Call Triggers

The Simulink example model sfcndemo sfun_ fcncall has an S-Function block. The S-
function sfun_fcncall triggers the execution of the function-call subsystems f1 subsys1
and f2 subsys2 on the first and second elements of the first output port.

2-9


matlab:sfcndemo_sfun_fcncall

2 How the Simulink Design Verifier Software Works

[T

Constant

2-10

- v
Sum sfun_fenecall 10
! - Diemice 1 Qut ;@

z Functicn call Ot
Unit Drelay S5-Function = f1 subsys1 Ot

0
Out v | |

i
f2 subsys2

Scope

matlabrootitoolbox'simulink'simdemas'simfeatures'srcisfun_fencall .o .

If you do not enable support for an S-function in Simulink Design Verifier and automatic
stubbing is enabled, the analysis ignores the behavior of the S-function. As a result, the
code that triggers the two function-call subsystems is ignored, resulting in two
unsatisfiable objectives. Since the function calls are ignored, the contents of those
subsystems are effectively eliminated from the analysis.

To enable support for an S-function in Simulink Design Verifier, see “Support Limitations
and Considerations for S-Functions and C/C++ Code” on page 3-37

Analyze a Model Using Automatic Stubbing

This section describes a workflow for using automatic stubbing, with a simple Simulink
model as an example.

* “Check Model Compatibility” on page 2-11

* “Turn On Automatic Stubbing” on page 2-13

* “Review Results” on page 2-13

* “Achieve Complete Results” on page 2-14

The following model contains a Discrete State-Space block, which is not compatible with
Simulink Design Verifier.



Handle Incompatibilities with Automatic Stubbing

- » yinFECu{nj+Du{n)
xin+1 =Ax(n)+Buln)
In1 . o
Disrefe State-Space Saturation

.
g

Check Model Compatibility

From the Simulink Editor, there are two ways to check whether a model is compatible
with Simulink Design Verifier:

* Run the Simulink Design Verifier compatibility check by selecting Analysis > Design
Verifier > Check Compatibility > Model.

Simulink Design Verifier Results Summary: ex_auto_stubbing_ho... @

08-1ul-2013 13:52:45

Checking compatibility of model
'ex_auto_stubbing_how_sldv_works'
Compiling model... done

Checking compatibility... done
'ex_auto_stubbing_how_sldv_works' is
with Simulink Design Verifier.

The model can be analyzed by Simulink Design Verifier.
It contains unsupported elements that will be stubbed
out during analysis. The results of the analysis might
be incomplete.

Save Log ] [ Close

* Select the analysis that you want:

2-11



2 How the Simulink Design Verifier Software Works

* Analysis > Design Verifier > Detect Design Errors > Model

* Analysis > Design Verifier > Generate Tests > Model
* Analysis > Design Verifier > Prove Properties > Model
The software first checks the compatibility of the model. If the model itself is

incompatible, for example, if it uses a variable-step solver, the analysis cannot
continue.

If it finds incompatible elements in the model, the software analyzes the model and, by
default, stubs out the incompatible elements. The Diagnostic Viewer also opens, listing
the incompatibilities.

& Diagnostic Viewer E\@

A ¢ 2|0 | @
ex_auto_stubbi...

- {'a SLDV Compatibility Analysis & 2 @
3:20:09 PM 1210/2013 Elapsed:7 sec

/My Simulink Design Verifier has only partial support for some elements of the model:
'ex_auto_stubbing' is partially compatible with Simulink Design Verifier.

The model can be analyzed by Simulink Design Verifier.

It contains unsupported elements that will be stubbed out during analysis. The results of
the analysis might be incomplete.

See documentation.

Component: sldv | Category: Design Verifier compatibility VWarning

/b Block 'ex_auto_stubbing/Discrete State-Space' is of type DiscreteStateSpace. Simulink Design:
Verifier does not support blocks of this type. ]
See documentaticn.

Component: sldv | Category: Design Verifier compatibility VWarning

Note For more information, see “View Diagnostics” (Simulink).

2-12



Handle Incompatibilities with Automatic Stubbing

Turn On Automatic Stubbing

Automatic stubbing is enabled by default. To change the automatic stubbing setting, in
the Configuration Parameters dialog box, on the main Design Verifier pane, select
Automatic stubbing of unsupported block and functions. When you run the analysis,
the software tells you that stubbing is turned on and the analysis continues.

Review Results

If you run an analysis with automatic stubbing enabled, make sure to review the results.
In this report, generated after a test case generation analysis, you see a table of
unsupported blocks that the software encountered.

Unsupported Blocks

The following blocks are not supported by Simulink Design Verifier. They were abstracted during the
analysis. This can lead Simulink Design Verifier to produce only partial results for parts of the model that
depends on the output values of these blocks.

Block Type
Discrete State-Space DiscreteStateSpace

The generated analysis report for the example model shows that the objectives are
undecided because of stubbing. The software cannot generate test cases because it does
not understand the operation of the Discrete State-Space block.

Objectives Undecided Due to Stubbing

Simulink Design Verifier was not able to decide these objectives due to stubbing.

# Type Model Item Description Analysis Time
(sec)

2 Decision Saturation input > lower limit F 12

3 Decision Saturation input > lower limit T 12

4 Decision Saturation input >= upper limit F 12

5 Decision Saturation input >= upper limit T 12

2-13



2 How the Simulink Design Verifier Software Works

Achieve Complete Results

If your analysis does not achieve complete results because of the stubbing, you can define
custom block replacements to give a more precise definition of the unsupported blocks.
For more information, see “Define Custom Block Replacements” on page 4-9 or follow

the steps in “Block Replacements for Unsupported Blocks”.

2-14



Analyze Export-Function Models

Analyze Export-Function Models

st

In1 outz

In1

Perform Simulink Design Verifier analysis on export-function models that are driven by a
scheduler. Export-function models consist of functional blocks that are made up of
function-call subsystems, function-call model blocks, or other export-function models.
Simulink Design Verifier supports analysis of models that invoke export-function by using
a scheduler. For more information on export-function models, see “Export-Function

Models” (Simulink).

Analyze an Export-Function Model Driven by Scheduler

You can run Simulink Design Verifier analysis on a model that consists of an export-

function model driven by a scheduler.

If your top model consists of an export-function model, the model is incompatible with

Simulink Design Verifier analysis.

For example, the model sldvExportFunction example is incompatible for analysis.

function|)

Function-Call Subsystem

Copyright 2018 The MathWaorks, Inc.

Out1

Simulink Design Verifier Results Summary: sldvExportFunction_e...

12-Jan-2018 11:59:02
Checking compatibility for test generation: model
'sldvExportFunction_example’

12-Jan-2018 11:59:03
'sldvExportFunction_sxample' is incompatible for test
generation with Simulink Design Verifier.

Save Log | Generate Tests

Close

For such models, you can create a scheduler that drives the export-function model, and
then run Simulink Design Verifier analysis. For more information see “Create a
Referenced Model” (Simulink) and “Scheduling Restrictions for Referenced Export-

Function Models” (Simulink).

2-15


matlab: open_system([docroot '/toolbox/sldv/examples/sldvExportFunction_example'])

2 How the Simulink Design Verifier Software Works

This model sldvExportFunction scheduler is compatible for analysis.

Export-Function Model Driven by Scheduler

in1

Function-Call
Generalor

Simulink Design Verifier Results Summary: sldvExportFunction_s...

ped

12-Jan-2018 11:51:55
Preprocessing model...done

shivExportFunclion_esample Checking compatibility for test generation: model
o i 'sldvExportFunction_scheduler’
! 2 Compiling model...done
N N ol Checking compatibility...done
Cul1

511

12-]Jan-2018 11:52:08
'sldvExportFunction_scheduler_replacement’ is compatible for
test generation with Simulink Design Verifier.

Madel

Copyright 2018 The MatiiMorks, Inc.

Save Log = Generate Tests Close

This example analyzes an export-function model:

1

2-16

Open the sldvExportFunction scheduler model.

sldvExportFunction scheduler

Run the Simulink Design Verifier test generation analysis by selecting Analysis >
Design Verifier > Generate Tests > Model.

The Results Summary window displays the analysis results.



matlab: open_system([docroot '/toolbox/sldv/examples/sldvExportFunction_scheduler'])
matlab: open_system([docroot '/toolbox/sldv/examples/sldvExportFunction_scheduler'])

Analyze Export-Function Models

3

Simulink Design Verifier Results Summary: sldvExportFunction_sche..,

Progress |
Objectives processed 1/1

Satisfied 1

Unsatisfiable 0

Elapsed time 0:21

Test generation completed normally.
1/1 objective satisfied

Results:

* Highlight analysis results on model

* iew tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (PDF)

* Create harness model

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Data saved in: sldvExportFunction_scheduler_sldvdata.mat
in folder: H:\Documents\MATLAB\sldv_output
\sldvExportFunction_scheduler

View Log

Close

To create the harness model, click Create harness model in the Simulink Design
Verifier Results Summary window. The software creates the harness model

sldvExportFunction scheduler harness.

2-17



2 How the Simulink Design Verifier Software Works

2-18

Size-Type

Test Case 1
—— Int In1 out1
[ L— a Out1

Inputs Test Unit (copied from sldvExportFunction_scheduler)

I-‘-H-—H_"""'-...
DoC
Text

Test Case Explanation

To generate the coverage report, you can simulate the harness model by using the
generated test cases. For more information, see “Simulate Tests and Produce a Model
Coverage Report” on page 7-14.

You can also view the coverage report by simulating the test cases. In the Results
Summary window, click Simulate tests and produce a model coverage report.

The software simulates all the test cases, collects model coverage information, and
displays a coverage report.

Coverage Report by Model

Top Model: sldvExportFunction scheduler

Complexity Decision Execution

TOTAL COVERAGE 100% oo 100% ———

1.... sldvExportFunction_example 2 100% o 100% ———

2... . sldvExportFunction_scheduler 0 - 100% —

To open the coverage report for the top model, click
sldvExportFunction example in the coverage report.

To open the coverage report for the scheduled model, click
sldvExportFunction scheduler.



See Also

5 In the coverage report of sldvExportFunction example model, review the
Summary section. This section summarizes the coverage results of the top model.

Summary

Model Hierarchy/Complexity Test 1
Decision Execudon

1. sldvExportFunction example 2 100% s 100%

2 . Bunction-Call Subsyvstern 1 100% s 100% S———

Limitations

» Export-function model that consists of more than one function-call initiator is not
supported.

* Data dependency between export-functions in a model is not supported.
* A masked model block that exports a Simulink Function block is not supported.

See Also

More About

. “Export-Function Models” (Simulink)
. “Analyze a Model” on page 1-4

2-19



2 How the Simulink Design Verifier Software Works

Nonfinite Data

2-20

The Simulink Design Verifier software does not support nonfinite data (for example, NaN
and Inf) and related operations.

During an analysis, the software handles nonfinite operations as follows:
* In the Relational Operator block:

+ Ifthe Relational operator parameter is isFinite, the output is always 1.

+ If the Relational operator parameter is isNan or isInf, the output is always 0.
* In the MATLAB Function block:

* For the isFinite function, the output is always 1.
* For the isNan and isInf functions, the output is always 0.



Approximations

Approximations

In this section...

“Approximations During Model Analysis” on page 2-21
“Types of Approximations” on page 2-21
“Floating-Point to Rational Number Conversion” on page 2-22

“Linearization of Two-Dimensional Lookup Tables for Floating-Point Data Types” on page
2-22

“Approximation of One- and Two-Dimensional Lookup Tables for Integer and Fixed-Point
Data Types” on page 2-23

“While Loops” on page 2-23

Approximations During Model Analysis

The Simulink Design Verifier software attempts to generate inputs and parameters to
achieve objectives. However, there could be an infinite number of values for the software
to search. To create reasonable limits on the analysis, the software performs
approximations to simplify the analysis. The software records any approximations it
performed in the Analysis Information chapter of the Simulink Design Verifier HTML
report. For a description of this chapter, see “Analysis Information Chapter” on page 13-
29.

Review the analysis results carefully when the software uses approximations. Evaluate
your model to identify which blocks or subsystems caused the software to perform the
approximations.

Rarely, an approximation can result in test cases that fail to achieve test objectives or
demonstrate a design error, or counterexamples that fail to falsify proof objectives. For
example, suppose the software generates a test case signal that should achieve an
objective by exceeding a threshold; a floating-point round-off error might prevent that
signal from attaining the threshold value.

Types of Approximations

The Simulink Design Verifier software performs the following approximations when it
analyzes a model:

2-21



2 How the Simulink Design Verifier Software Works

2-22

+ “Floating-Point to Rational Number Conversion” on page 2-22

* “Linearization of Two-Dimensional Lookup Tables for Floating-Point Data Types” on
page 2-22

* “Approximation of One- and Two-Dimensional Lookup Tables for Integer and Fixed-
Point Data Types” on page 2-23

* “While Loops” on page 2-23

Floating-Point to Rational Number Conversion

In some cases, the Simulink Design Verifier software simplifies the linear arithmetic of
floating-point numbers by approximating them with infinite-precision rational numbers.
The software discovers how the logical relationships between these values affects the
objectives. This analysis enables the software to support supervisory logic that is
commonly found in embedded controls designs.

If your model contains floating-point values in the signals, input values, or block
parameters, Simulink Design Verifier converts some values to rational numbers before
performing its analysis. As a result of these approximations:

* Round-off error is not considered.

* Upper and lower bounds of floating-point numbers are not considered.

» If your model casts floating-point values to integer values, the integer representation
can affect tests generated for the model. In some rare cases the generated tests may
not satisfy objectives associated with the floating-point values.

Linearization of Two-Dimensional Lookup Tables for Floating-
Point Data Types

The Simulink Design Verifier software does not support nonlinear arithmetic for floating-
point data types. If your model contains any 2-D Lookup Table blocks, or n-D Lookup
Table blocks where n = 2, with all of the following characteristics, the software
approximates nonlinear two-dimensional interpolation with linear interpolation by fitting
planes to each interpolation interval.



Approximations

Block Characteristics

n-D Lookup Table block, n =
A

Interpolation method parameter is Linear.
* Extrapolation method parameter is Clip or Linear.

* The input and output signals both have the floating-
point data type.

Approximation of One- and Two-Dimensional Lookup Tables
for Integer and Fixed-Point Data Types

If your model contains lookup tables of the following characteristics, Simulink Design
Verifier automatically converts your original lookup table into a new lookup table
composed of breakpoints that are evenly-spaced in each of their respective dimensions.

Block Characteristics

n-D Lookup Table block, n =
lorn=2:

Interpolation method parameteris Linear.
* Extrapolation method parameter is Clip .

* Index search method parameter is Linear search
or Binary search.

* The input and output signals are both of the same type
and are both integer type or fixed-point type.

This approximation allows Simulink Design Verifier to generate tests significantly faster.
The time saved is pronounced when you have unsatisfiable test objectives in your model.

If Simulink Design Verifier applies such approximations to your model, the Simulink
Design Verifier report includes details of the approximation.

While Loops

If your model or a Stateflow chart in your model contains a while loop, Simulink Design
Verifier tries to detect a conservative constant bound that allows the while loop to exit. If
the software cannot find a constant bound, it performs a while loop approximation. With
this approximation, the analysis does not prove objectives to be valid or unsatisfiable and
it does not prove dead logic. The generated analysis report notes this approximation.

The behavior of the while loop approximation is consistent in all modes of analysis, as
described in the following table.

2-23



2 How the Simulink Design Verifier Software Works

2-24

Analysis Mode

While Loop Approximation

Design Error Detection

Sets number of while loop iterations to 3.
Does not report dead logic or valid
objectives.

Test Case Generation

Sets number of while loop iterations to 3.
Does not report unsatisfiable objectives.

Property Proving

Sets number of while loop iterations to 3.
Does not report valid objectives.




Reporting Approximations Through Validation Results

Reporting Approximations Through Validation Results

Simulink Design Verifier performs approximations during analysis. The software identifies
the presence of approximations and reports them at the level of each objective status in
the Objective Status Chapter of the Simulink Design Verifier HTML report. For more
information, see “Approximations During Model Analysis” on page 2-21 and “Objectives
Status Chapters” on page 13-35.

To validate the test cases or counterexamples during simulation, the model is locked in
fast restart mode. For more information, see “Fast Restart Methodology” (Simulink).

For example, to ensure the effect of approximations, in the test generation analysis the
test cases are validated against the coverage data during analysis.

Impact of Approximations on Objectives Status

The software provides the test cases or counterexamples for the objectives that are
impacted due to approximations during analysis. These objectives are reported as
“Objectives Undecided with Testcases” on page 13-43 for test generation analysis and
“Objectives Undecided with Counterexamples” on page 13-45 for property-proving
analysis.

The software confirms the objectives that can be impacted due to approximations as dead
logic, valid, or unsatisfiable. This table summarizes these objectives for all analysis
modes.

Analysis Mode Objectives Status

Design error detection |¢ “Dead Logic under Approximation” on page 13-39
*  “Objectives Valid under Approximation” on page 13-40

Test generation “Objectives Unsatisfiable under Approximation” on page 13-43

Property proving “Objectives Valid under Approximation” on page 13-44

The software is unable to confirm the objectives status through validation results for
these cases:

* The objectives introduced by the block replacement. For more information, see “What
Is Block Replacement?” on page 4-2.

* The Verification Subsystem consists of the sldv.test or sldv.prove function.

2-25



2 How the Simulink Design Verifier Software Works

2-26

* You abort the analysis by using the Stop button in the Simulink Design Verifier Results
Summary window or the software exceeds its “Maximum analysis time” on page 15-
13. Therefore, some objectives remain unvalidated during analysis and the software
is unable to confirm the objectives status.

This table summarizes the objectives statuses for the preceding cases. To confirm the
status of the objectives, you must run additional simulations of test cases or
counterexamples.

Analysis Mode Objectives Status

Design error detection |* “Active Logic - Needs Simulation” on page 13-39
* “Objectives Falsified - Needs Simulation” on page 13-41

Test generation “Objectives Satisfied - Needs Simulation” on page 13-42

Property proving “Objectives Falsified - Needs Simulation” on page 13-45

Identifying the Effect of Approximations Through Validation
Results

This example shows how approximations affect the objectives status of the Switch block.
In the sldvApproximationsExample model, the calculations 1./3 and 2./3 in the
Constant block result in “Floating-Point to Rational Number Conversion” on page 2-22
during analysis.

For inport In2 equal to -1, the input 2 of the Switch block is not equal to 0 during
simulation. Therefore, the Switch does not select inport In3 as output. For test
generation and property-proving analysis, the objective logical trigger input
false(output is from 3rd input port) for the Switch block is undecided due to
the impact of approximations during analysis.

1 Open the model sldvApproximationsExample.



matlab: open_system([docroot '/toolbox/sldv/examples/sldvApproximationsExample'])

Reporting Approximations Through Validation Results

Reporting Approximations Through Validation Results

In1
2 )y—++ n.a
-+
Add1 ’ — . —
1.3 243 Switch

Constanti Constant2

In3

This example shows how Simulink Design Verifier reports the impact of approximations
through validation results.

In this model, approximations occur due to floating point to rational number conversion
during analysis. In the Simulink Design Verifier Report, the Objective Status chapter
reports the objectives impacted by approximations for test generation and property
proving analysis.

Caopyright 2017 The MathWorks, Inc.

For the test generation analysis, click Analysis > Design Verifier > Generate Tests
> Model. The software simulates the model and validates the test results against
coverage data.

To view the detailed analysis report, click HTML in the Simulink Design Verifier
Results Summary window.

This image shows the Test Objectives Status section of the generated analysis report.
The software provides two test cases that are impacted by approximations.

2-27



2 How the Simulink Design Verifier Software Works

Chapter 3. Test Objectives Status
Table of Contents

Objectives Satisfied
Objectives Undecided with Testcases

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

- |Analysis
# Type Model Item Description Time (sec) Test Case
N Decision  |Switch lc?glcal trigger input true (output 1s 14 1
o from 1st input port)

Objectives Undecided with Testcases

Simulink Design Verifier was not able to decide these objectives due to the impact of approximations during analysis

- |Analysis
# Type Model Item IDescription Time (sec) Test Case
1 Decision  |Switch lc?glcal trigger nput false (output 1s 14 b
o from 3rd mput port)

4  For the property proving analysis, click Analysis > Design Verifier > Prove
Properties > Model. This image shows the Proof Objectives Status section of the
generated analysis report.

Chapter 3. Proof Objectives Status
Table of Contents

Objectives Undecided with Counterexamples

Objectives Undecided with Counterexamples

L |Analysis . .
# Type Model Item Description Time (sec) Counterexample|
1 [reof Ipioof Objective Objective: [1. 2] 1 1
objective

The software provides one counterexample that is impacted by approximations.

See Also
More About

. “Approximations” on page 2-21
. “Simulink Design Verifier Reports” on page 13-28

2-28



Logic Operations Short-Circuiting

Logic Operations Short-Circuiting

Simulink Design Verifier can consider logic blocks as short-circuiting during analysis,
depending on the value you set for the Simulink Coverage
CovLogicBlockShortCircuit “Model Parameters” (Simulink).

If CovLogicBlockShortCircuitis 'on', Simulink Design Verifier short-circuits logic
blocks during analysis. In this case, when a previous input alone determines the block
output, the analysis ignores any remaining block inputs. For example, if the first input to a
Logical Operator block whose Operator parameter specifies AND is false, the analysis
ignores the values of the other inputs.

Consider the following example model, with the Model coverage objectives parameter
set to Condition Decision.

O r—
In1
(z ) » Ao F——»{( 1)
In2

St

h

Lo-gical
Orperator

When Simulink Design Verifier analyzes this model for Condition Decision coverage, the
analysis can only satisfy five of six objectives for the Logical Operator block inputs. The
software cannot generate a test case when the third input to the Logical Operator block is
false. If the second input is false, the third input is false, but the software ignores the
third input due to the short-circuiting. If the second input is true, the third input is never
false.

2-29






Checking Compatibility with the
Simulink Design Verifier Software

* “Check Model Compatibility” on page 3-2

* “Supported and Unsupported Simulink Blocks in Simulink Design Verifier”
on page 3-10

» “Support Limitations for Simulink Software Features” on page 3-22

* “Support Limitations for Model Blocks” on page 3-25

* “Support Limitations for Stateflow Software Features” on page 3-27
* “Support Limitations for MATLAB for Code Generation” on page 3-32

* “Support Limitations and Considerations for S-Functions and C/C++ Code”
on page 3-37



3 Checking Compatibility with the Simulink Design Verifier Software

Check Model Compatibility

In this section...

“Compatibility with Simulink Design Verifier” on page 3-2
“Run Compatibility Check” on page 3-2
“Compatibility Check Results” on page 3-3

Compatibility with Simulink Design Verifier
The Simulink Design Verifier software analyzes Simulink models to:

* Detect design errors that can occur at run time.
* Generate test cases that achieve model coverage.
* Prove properties and identify property violations.

For these analysis, the models must:

* Compile into an executable form.
* Be compatible with code generation.

» Perform a zero-second simulation with no errors, where the simulation start time and
stop time are 0.

The software supports a broad range of Simulink and Stateflow software features in your
models. However, there are features that the product does not support, described in
“Support Limitations for Simulink Software Features” on page 3-22 and “Support
Limitations for Stateflow Software Features” on page 3-27. Avoid using unsupported
features in models that you plan to analyze with Simulink Design Verifier.

Run Compatibility Check

Before the software begins an analysis, it automatically checks the compatibility of your
model.

Before you start an analysis, you can run a compatibility check on your model. To run a
compatibility check on your model, do one of the following:

* From the Simulink Editor, select Analysis > Design Verifier > Check Compatibility
> Model.

3-2



Check Model Compatibility

* In the Model Advisor, select either By Product > Simulink Design Verifier > Check
compatibility with Simulink Design Verifier or By Task > Simulink Design
Verifier Compatibility Check > Check compatibility with Simulink Design
Verifier. Click Run This Check.

For more information, see “Simulink Design Verifier Checks”.

» Use the sldvcompat function to run the compatibility checker programmatically at
the command line or in a MATLAB program. For more information, see the
sldvcompat reference page.

Compatibility Check Results

There are three outcomes of a compatibility check:

* “Model Is Compatible” on page 3-3
* “Model Is Incompatible” on page 3-4
* “Model Is Partially Compatible” on page 3-7

Model Is Compatible

In the Results Summary window, you see if your model is compatible with the software.

3-3



3 Checking Compatibility with the Simulink Design Verifier Software

Simulink Design Verifier Results Summarny: sldvdemo_cruise_control >

06-Jul-2017 17:26:04

Checking compatibility for test generation: model
'sldvdemo_cruise_control’

Compiling model...done

Checking compatibility...done

06-Jul-2017 17:26:25
'sldwdemo_cruise_control' is compatible for test generation with
Simulink Design Verifier.

Save Log | |Generate Tests Close

If your model is compatible, you can continue with the analysis from the Results Summary
window.

Note If you make changes to the model after the compatibility check completes, you
cannot continue the analysis from the results summary.

Model Is Incompatible
If the model itself is incompatible with the software, two dialog boxes open:

* Simulink Design Verifier Results Summary

3-4



Check Model Compatibility

Simulink Design Verifier Results Summary: sldemo_fuelsys *

04-Jul-2017 11:05:42
Checking compatibility for test generation: model 'sldemo_fuelsys’

O4-Jul-2017 11:05:42
'sldemo_fuelsys' is incompatible for test generation with

Simulink Design Verifier.

Save Log | Generate Tests Close

Diagnostic Viewer. Use the information in this dialog box to identify and fix the
incompatibility.

+ If your model uses a variable-step solver, configure the solver options to a fixed
step.

3-5



3 Checking Compatibility with the Simulink Design Verifier Software

vv%v£v|.'fv|q i
sldemo_fuelsys

* Simulink Design Verifier Compatibility Analysis & 2
9:48 AM Elapsec

Simulink Design Verifier cannct be use

the solwer options for a fixed-step solver.

ee documentation.

Component:simulink

Simulink Design Verifier failed to initialize: 'sldemo fuslsvs' is incompatible

Simulink Design Verifier.

Component.simulink | Category:Design Verifier compafibilityermor

Diagnaostic Viewer EI@

with a wariable-step solwver. You must configure

* If your model has nonfinite data, change the value of the data or configure the
model so that the data is treated as a variable during Simulink Design Verifier
analysis.

3-6




Check Model Compatibility

Diagnaostic Viewer
v v L-I_Ellv ﬁv | fr)v |

ex_mMNaninf

* Simulink Design Verifier Compatibility Analysis & 3

Ela
Simulink Design Verifier failed to initialize: ‘'ex _mManInf' is incompatible with
Simulink Design Verifier
mponent:simulink | Category:Design Verfie pa ETo|
The paramster "G" used by ‘'ex mNanInf/Constant' has non—-finite wvalue {(HaM or Inf or -

Inf}). Simulink Design Verifier does not support parameters with this configuraticon.
Please consider changing the waluese of this parameter or configure S5imulink Design
erifier =o that it is treated as wvariable during analysis.
‘Design Verifier compatibilityerror
met used by ‘'ex mNanInf/Constantl' has non-finite walue (MNaW or Inf or -

} ulink Design Verifier does not support parameters th thi=s configuration.
Please consider changing the walue of this parameter or configure S5imulink Design
Verifier =o that it is treated as wvariable during analysis.

ateaorv: Desion Verifier comopatibilitverror

m

Note For more information about the Diagnostic Viewer, see “View Diagnostics”
(Simulink).

If your model is large and contains many subsystems, you can use the Test Generation
Advisor to determine whether certain subsystems cause the incompatibility. For more
information, see “Use Test Generation Advisor to Identify Analyzable Components” on
page 7-22.

Model Is Partially Compatible

A model is partially compatible if at least one object in the model is incompatible.
Automatic stubbing is enabled by default. If you start an analysis that determines that the
model is partially incompatible, you see the following message, but the analysis proceeds.

The model can be analyzed by Simulink Design Verifier.

It contains unsupported elements that will be stubbed out
during analysis. The results of the analysis might be
incomplete.




3 Checking Compatibility with the Simulink Design Verifier Software

If you have disabled automatic stubbing, the analysis stops. The Results Summary window
appears as follows.

Simulink Design Verifier Results Summary: sldvdemo_sqrt_blockrep et

16-Jun-2017 11:29:07

Checking compatibility for test generation: model
'sldvdemo_sqrt_blockrep'

Compiling model...done

Checking compatibility...done

16-Jun-2017 11:29:29
'sldvdemo_sqrt_blockrep' is for test
generation with Simulink Design Verifier.

The model contains unsupported elements and cannot be analyzed
directly by Simulink Design Verifier. You can analyze it by turning
on the AutomaticStubbing option.

See documentation.

You can proceed to the analysis by pressing the "Generate Tests"
button below.

Save Log | Generate Tests Close

To turn on automatic stubbing:

1 In the Simulink Editor, select Analysis > Design Verifier > Options.

2 Under Analysis options, select Automatic stubbing of unsupported blocks and
functions.

For more information, see “Handle Incompatibilities with Automatic Stubbing” on page 2-
8.

3-8



Check Model Compatibility

If your model is large or complex, you can use the Test Generation Advisor to determine
whether certain subsystems cause the incompatibility. For more information, see “Use
Test Generation Advisor to Identify Analyzable Components” on page 7-22.

3-9



3 Checking Compatibility with the Simulink Design Verifier Software

Supported and Unsupported Simulink Blocks in Simulink
Design Verifier

Simulink Design Verifier provides various levels of support for Simulink blocks:

* Fully supported
» Partially supported

* Not supported

If your model contains unsupported blocks, you can enable automatic stubbing. Automatic
stubbing considers the interface of the unsupported blocks, but not their behavior. If any
of the unsupported blocks affect the simulation outcome, however, the analysis might

achieve only partial results. For details about automatic stubbing, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-8.

To achieve 100% coverage, avoid using unsupported blocks in models that you analyze.
Similarly, for partially supported blocks, specify only the block parameters that Simulink
Design Verifier recognizes.

The following tables summarize Simulink Design Verifier analysis support for Simulink
blocks. Each table lists the blocks in a Simulink library and describes support information
for that particular block.

Additional Math and Discrete Library

The software supports all blocks in the Additional Math and Discrete library.

Commonly Used Blocks Library

The Commonly Used Blocks library includes blocks from other libraries. Those blocks are
listed under their respective libraries.

Continuous Library

Block Support Notes

Derivative Not supported

Integrator Not supported and not stubbable
Integrator Limited Not supported and not stubbable

3-10




Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes
PID Controller Not supported
PID Controller (2 DOF) Not supported

Second Order Integrator

Not supported and not stubbable

Second Order Integrator Limited

Not supported and not stubbable

State-Space

Not supported and not stubbable

Transfer Fcn

Not supported and not stubbable

Transport Delay Not supported
Variable Time Delay Not supported
Variable Transport Delay Not supported

Zero-Pole

Not supported and not stubbable

Discontinuities Library

The software supports all blocks in the Discontinuities library.

Discrete Library

Block Support Notes
Delay Supported
Difference Supported
Discrete Derivative Supported
Discrete Filter Supported
Discrete FIR Filter Supported
Discrete PID Controller Supported
Discrete PID Controller (2 DOF) Supported
Discrete State-Space Not supported
Discrete Transfer Fcn Supported
Discrete Zero-Pole Not supported
Discrete-Time Integrator Supported
First-Order Hold Supported

3-11




3 Checking Compatibility with the Simulink Design Verifier Software

Block Support Notes
Memory Supported
Tapped Delay Supported
Transfer Fcn First Order Supported
Transfer Fcn Lead or Lag Supported
Transfer Fcn Real Zero Supported
Unit Delay Supported
Zero-Order Hold Supported

Logic and Bit Operations Library

The software supports all blocks in the Logic and Bit Operations library.

Lookup Tables Library

Block Support Notes
Cosine Supported

Direct Lookup Table (n-D) Supported
Interpolation Using Prelookup Not supported when:

¢ The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than
4,

or

¢ The Interpolation method parameter is Linear and the
Number of sub-table selection dimensions parameter
is not 0.

1-D Lookup Table

Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

2-D Lookup Table

Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

3-12




Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block

Support Notes

n-D Lookup Table

Not supported when:

* The Interpolation method or the Extrapolation
method parameter is Cubic Spline.

or

* The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than
5.

Lookup Table Dynamic

Supported

Prelookup

Not supported when output is an array of buses

Sine

Supported

Math Operations Library

Block Support Notes
Abs Supported
Add Supported
Algebraic Constraint Supported
Assignment Supported
Bias Supported
Complex to Magnitude-Angle Not supported
Complex to Real-Imag Supported
Divide Supported
Dot Product Supported
Find Nonzero Elements Not supported
Gain Supported
Magnitude-Angle to Complex Supported

3-13



3 Checking Compatibility with the Simulink Design Verifier Software

Block

Support Notes

Math Function

All signal types support the following Function
parameter settings.

conj hermitian [magnitude”~2 |mod
rem reciproca |square transpose
1

The software does not support the following Function
parameter settings.

10%u exp hypot
log loglo pow
Matrix Concatenate Supported
MinMax Supported
MinMax Running Resettable Supported
Permute Dimensions Supported
Polynomial Supported
Product Supported
Product of Elements Supported
Real-Imag to Complex Supported
Reciprocal Sqrt Not supported
Reshape Supported
Rounding Function Supported
Sign Supported
Signed Sqrt Not supported
Sine Wave Function Not supported
Slider Gain Supported
Sqrt Supported
Squeeze Supported
Subtract Supported

3-14




Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes

Sum Supported

Sum of Elements Supported

Trigonometric Function Supported if Function is sin, cos, or sincos, and

Approximation method is CORDIC.

Unary Minus Supported

Vector Concatenate Supported

Weighted Sample Time Math Supported

Model Verification Library
The software supports all blocks in the Model Verification library.

Model-Wide Utilities Library

Block Support Notes
Block Support Table Supported
DocBlock Supported
Model Info Supported
Timed-Based Linearization Not supported
Trigger-Based Linearization Not supported

Ports & Subsystems Library

Block Support Notes
Atomic Subsystem Supported
Code Reuse Subsystem Supported
Configurable Subsystem Supported
Enable Supported

3-15




3 Checking Compatibility with the Simulink Design Verifier Software

Block

Support Notes

Enabled Subsystem

Design range checks do not consider specified minimum
and maximum values for blocks connected to the outport
of the subsystem. For more information on design range
checks, see “Check for Specified Intermediate Minimum
and Maximum Signal Values” on page 6-29.

Simulink Design Verifier treats Enabled Subsystems as
short-circuited during test generation.

Enabled and Triggered Subsystem

Not supported when the trigger control signal specifies a
fixed-point data type.

Design range checks do not consider specified minimum
and maximum values for blocks connected to the outport
of the subsystem. For more information on design range
checks, see “Check for Specified Intermediate Minimum
and Maximum Signal Values” on page 6-29.

Simulink Design Verifier treats Enabled and Triggered
Subsystems as short-circuited during test generation.

For Each

Supported with the following limitations:

*  When For Each Subsystem contains one or more
Simulink Design Verifier Test Condition, Test
Objective, Proof Assumption, or Proof Objective
blocks, not supported.

*  When the mask parameters of the For Each Subsystem
are partitioned, not supported.

For Each Subsystem

Supported with the following limitations:

*  When For Each Subsystem contains one or more
Simulink Design Verifier Test Condition, Test
Objective, Proof Assumption, or Proof Objective
blocks, not supported.

*  When the mask parameters of the For Each Subsystem
are partitioned, not supported.

For Iterator Subsystem

Supported

3-16




Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes
Function-Call Feedback Latch Supported
Function-Call Generator Supported
Function-Call Split Supported

Function-Call Subsystem

Design range checks do not consider specified minimum
and maximum values for blocks connected to the outport
of the subsystem. For more information on design range
checks, see “Check for Specified Intermediate Minimum
and Maximum Signal Values” on page 6-29.

Not supported when the Function-Call Subsystem is
invoked using function-call triggers passed via root-level
Inport blocks. For more information see, “Export-Function
Models” (Simulink).

If

Parameter configurations are not supported. The analysis
ignores parameter configurations that you specify for an
If block.

If Action Subsystem Supported

In Bus Element Supported

Inport Supported

Model Supported except for the limitations described in
“Support Limitations for Model Blocks” on page 3-25.

Model Variants Supported except for the limitations described in
“Support Limitations for Model Blocks” on page 3-25.

Out Bus Element Supported

Outport Supported

Resettable Subsystem Supported

Subsystem Supported

Switch Case Supported

Switch Case Action Subsystem Supported

Trigger Supported

3-17



3 Checking Compatibility with the Simulink Design Verifier Software

Block

Support Notes

Triggered Subsystem

Not supported when the trigger control signal specifies a
fixed-point data type.

Design range checks do not consider specified minimum
and maximum values for blocks connected to the outport
of the subsystem. For more information on design range
checks, see “Check for Specified Intermediate Minimum
and Maximum Signal Values” on page 6-29.

Simulink Design Verifier treats Enabled Subsystems as
short-circuited during test generation.

Variant Subsystem

Not supported when the Generate preprocessor
conditionals parameter is enabled.

Only the active variant is analyzed.

While Iterator Subsystem

Supported

Signal Attributes Library

The software supports all blocks in the Signal Attributes library.

Signal Routing Library

Block Support Notes
Bus Assignment Supported
Bus Creator Supported
Bus Selector Supported
Data Store Memory Supported
Data Store Read Supported
Data Store Write Supported
Demux Supported
Environment Controller Supported
From Supported
Goto Supported

3-18




Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes
Goto Tag Visibility Supported
Index Vector Supported

Manual Switch

The Manual Switch block is compatible with the software,
but the analysis ignores this block in a model. The
analysis does not flag the coverage objectives for this
block as satisfiable or unsatisfiable.

Model coverage data is collected for the Manual Switch
block.

Merge Supported
Multiport Switch Supported
Mux Supported
Selector Supported
Switch Supported
Vector Concatenate Supported
Sinks Library
Block Support Notes
Display Supported
Floating Scope Supported
Outport (Outl) Supported
Scope Supported

Stop Simulation

Not supported and not stubbable

Terminator Supported
To File Supported
To Workspace Supported
XY Graph Supported

3-19



3 Checking Compatibility with the Simulink Design Verifier Software

Sources Library

Block Support Notes

Band-Limited White Noise Not supported

Chirp Signal Not supported

Clock Supported

Constant Supported unless Constant value is inf.
Counter Free-Running Supported

Counter Limited Supported

Digital Clock Supported

Enumerated Constant Supported

From File Not supported. When MAT-file data is stored in MATLAB
timeseries format, not stubbable.

From Workspace Not supported

Ground Supported

Inport (In1) Supported

Pulse Generator Supported

Ramp Supported

Random Number Not supported and not stubbable

Repeating Sequence Not supported

Repeating Sequence Interpolated Not supported

Repeating Sequence Stair Supported

Signal Builder Not supported

Signal Generator Not supported

Sine Wave Not supported

Step Supported

Uniform Random Number

Not supported and not stubbable

3-20




Supported and Unsupported Simulink Blocks in Simulink Design Verifier

User-Defined Functions Library

Block

Support Notes

Fcn

Supports all operators except ~, and supports only the
mathematical functions abs, ceil, fabs, floor, rem,
and sgn.

Parameter configurations are not supported. The analysis
ignores parameter configurations that you specify for
these blocks.

Test generation is not supported for relational boundary
coverage.

Interpreted MATLAB Function

Not supported

Level-2 MATLAB S-Function

For limitations, see “Support Limitations and
Considerations for S-Functions and C/C++ Code” on page
3-37.

MATLAB Function

For limitations, see “Support Limitations for MATLAB for
Code Generation” on page 3-32.

Simulink Function

For limitations, see “Support Limitations and
Considerations for S-Functions and C/C++ Code” on page
3-37.

S-Function Builder

For limitations, see “Support Limitations and
Considerations for S-Functions and C/C++ Code” on page
3-37.

Simulink Function

Simulink Function blocks with output arguments that are
of bus data-type are not supported.

Calls to Simulink Functions across model boundaries are
not supported.

3-21



3 Checking Compatibility with the Simulink Design Verifier Software

Support Limitations for Simulink Software Features

3-22

Simulink Design Verifier does not support the following Simulink software features. Avoid
using these unsupported features.

Not Supported

Description

Variable-step solvers

The software supports only fixed-step solvers.

For more information, see “Choose a Fixed-Step Solver”
(Simulink).

Callback functions

The software does not execute model callback functions
during the analysis. The results that the analysis generates,
such as the harness model, may behave inconsistently with
the expected behavior.

* If a model or any referenced model calls a callback
function that changes any block parameters, model
parameters, or workspace variables, the analysis does not
reflect those changes.

* Changing the storage class of base workspace variables on
model callback functions or mask initializations is not
supported.

* Callback functions called prior to analysis, such as the
PreLoadFcn or PostLoadFcn model callbacks, are fully
supported.

Model callback functions

The software only supports model callback functions if the
InitFcn callback of the model is empty.

Algebraic loops

The software does not support models that contain algebraic
loops.

For more information, see “Algebraic Loops” (Simulink).

Masked subsystem
initialization functions

The software does not support models whose masked
subsystem initialization modifies any attribute of any
workspace parameter.

Complex signals

The software supports only real signals.

For more information, see “Complex Signals” (Simulink).




Support Limitations for Simulink Software Features

Not Supported

Description

Variable-size signals

The software does not support variable-size signals. A
variable-size signal is a signal whose size (number of
elements in a dimension), in addition to its values, can change
during model execution.

For more information, see “Variable-Size Signal Basics”
(Simulink).

Multiword fixed-point
data types

The software does not support multiword fixed-point data
types larger than 128 bits.

Nonzero start times

Although Simulink allows you to specify a nonzero simulation
start time, the analysis generates signal data that begins only
at zero. If your model specifies a nonzero start time:

* Ifyou do not select the Reference input model in
generated harness parameter (the default), the harness
model is a subsystem. The analysis sets the start time of
the harness model to 1 and continues the analysis.

* Ifyou select the Reference input model in generated
harness parameter, a Model block references the harness
model. The software cannot change the start time of the
harness model, so the analysis stops and you see a
recommendation to set the Start time parameter to 0.

3-23



3 Checking Compatibility with the Simulink Design Verifier Software

Not Supported

Description

Nonfinite data

The software does not support nonfinite data (for example,
NaN and Inf) and related operations.

In the Relational Operator block, the software assigns the
output as follows:

* Ifthe Relational operator parameter is isFinite, the
output is always 1.

* If the Relational operator parameter is isNan or isInf,
the output is always 0.

In the MATLAB Function block, the software assigns the
return value as follows:
* For the isFinite function, the output is always 1.

* For the isNan and isInf functions, the output is always
0.

Concurrent execution

The software does not support models that are configured for
concurrent execution.

Signals with nonzero
sample time offset

The software does not support models with signals that have
nonzero sample time offsets.

Models with no output
ports

The software only supports models that have one or more
output ports.

Large floating-point
constants outside the
range [-realmax/2,
realmax/2]

The use of large floating-point constants can cause out of
memory errors or substantial loss of precision. Avoid using
such constants if possible.

Symbolic Dimensions

The software does not support symbolic dimensions for test
generation, property proving, or design error detection.




Support Limitations for Model Blocks

Support Limitations for Model Blocks

Simulink Design Verifier supports the Model block with the following limitations. The
software cannot analyze a model containing one or more Model blocks if:

The referenced model is protected. Protected referenced models are encoded to
obscure their contents. This allows third parties to use the referenced model without
being able to view the intellectual property that makes up the model.

For more information, see “Simulate Protected Models from Third Parties” (Simulink).

The parent model or any of the referenced models returns an error when you set the
Configuration Parameters > Diagnostics > Connectivity > Element name
mismatch parameter to error.

You can use the Element name mismatch diagnostic along with bus objects so that
your model meets the bus element naming requirements imposed by some blocks.

The Model block uses asynchronous function-call inputs.

Any of the Model blocks in the model reference hierarchy creates an artificial
algebraic loop. If this occurs, take the following steps:

1 On the Diagnostics pane of the Configuration Parameters dialog box, set the
Minimize algebraic loop parameter to error so that Simulink reports an
algebraic loop error.

2 On the Model Referencing Pane of the Configuration Parameters dialog box,
select the Minimize algebraic loop occurrences parameter.

Simulink tries to eliminate the artificial algebraic loop during simulation.

3  Simulate the model.
If Simulink cannot eliminate the artificial algebraic loop, highlight the location of
the algebraic loop by selecting Simulation > Update Diagram.

5 Eliminate the artificial algebraic loop so that the software can analyze the model.
Break the loop with Unit Delay blocks so that the execution order is predictable.

Note For more information, see “Algebraic Loops” (Simulink).

The parent model uses the base workspace and the referenced model uses a data
dictionary.

The parent model and the referenced model have mismatched data type override
settings. The data type override setting of the parent model and its referenced models

3-25



3 Checking Compatibility with the Simulink Design Verifier Software

3-26

must be the same, unless the data type override setting of the parent model is Use
local settings. You can select the data type override settings for your model in the
Analysis menu, in the Fixed Point Tool dialog box under the Settings for selected
system pane.

The referenced model is a Model Reference block with virtual bus inports, and the
signals in the bus do not all have the same sample time at compilation. To make the
model compatible with Simulink Design Verifier analysis, convert the port to a
nonvirtual bus, or specify an explicit sample time for the port.



Support Limitations for Stateflow Software Features

Support Limitations for Stateflow Software Features

Simulink Design Verifier does not support the following Stateflow software features. Avoid
using these unsupported features in models that you analyze.

In this section...

“ml Namespace Operator, ml Function, ml Expressions” on page 3-27
“C or C++ Operators” on page 3-27
“C Math Functions” on page 3-27

“Atomic Subcharts That Call Exported Graphical Functions Outside a Subchart” on page
3-28

“Atomic Subchart Input and Output Mapping” on page 3-28
“Recursion and Cyclic Behavior” on page 3-29

“Custom C or C++ Code” on page 3-31

“Machine-Parented Data” on page 3-31

“Textual Functions with Literal String Arguments” on page 3-31

ml Namespace Operator, ml Function, ml Expressions

The software does not support calls to MATLAB functions or access to MATLAB
workspace variables, which the Stateflow software allows. See “Access Built-In MATLAB
Functions and Workspace Data” (Stateflow).

C or C++ Operators

The software does not support the sizeof operator, which the Stateflow software allows.

C Math Functions

The software supports calls to the following C math functions:

e abs
e+ ceil
 fabs

3-27



3 Checking Compatibility with the Simulink Design Verifier Software

+ floor
+ fmod
* labs
+ ldexp

* pow (only for integer exponents)

The software does not support calls to other C math functions, which the Stateflow
software allows. If automatic stubbing is enabled, which it is by default, the software
eliminates these unsupported functions during the analysis.

For information about C math functions in Stateflow, see “Call C Functions in C Charts”
(Stateflow).

Note For details about automatic stubbing, see “Handle Incompatibilities with Automatic
Stubbing” on page 2-8.

Atomic Subcharts That Call Exported Graphical Functions
Outside a Subchart

The software does not support atomic subcharts that call exported graphical functions,
which the Stateflow software allows.

Note For information about exported functions, see “Export Stateflow Functions for
Reuse” (Stateflow).

Atomic Subchart Input and Output Mapping

If an input or output in an atomic subchart maps to chart-level data of a different scope,
the software does not support the chart that contains that atomic subchart.

For an atomic subchart input, this incompatibility applies when the input maps to chart-
level data of output, local, or parameter scope. For an atomic subchart output, this
incompatibility applies when the output maps to chart-level data of local scope.

3-28



Support Limitations for Stateflow Software Features

Recursion and Cyclic Behavior

The software does not support recursive functions, which occur when a function calls
itself directly or indirectly through another function call. Stateflow software allows you to
implement recursion using graphical functions.

In addition, the software does not support recursion that the Stateflow software allows
you to implement using a combination of event broadcasts and function calls.

Note For information about avoiding recursion in Stateflow charts, see “Guidelines for
Avoiding Unwanted Recursion in a Chart” (Stateflow).

Stateflow software also allows you to create cyclic behavior, where a sequence of steps is
repeated indefinitely. If your model has a chart with cyclic behavior, the software cannot
analyze it.

Note For information about cyclic behavior in Stateflow charts, see “Cyclic Behavior in a
Chart” (Stateflow).

However, you can modify a chart with cyclic behavior so that it is compatible, as in the
following example.

The following chart creates cyclic behavior. State A calls state A1, which broadcasts a
Clear event to state B, which calls state B2, which broadcasts a Set event back to state
A, causing the cyclic behavior.

3-29



3 Checking Compatibility with the Simulink Design Verifier Software

A

B2
send(Set A);

E Icnnd] Flear
i:lear F"ﬂ E

v

If you change the send function calls to use directed event broadcasts so that the Set and
Clear events are broadcast directly to the states B1 and Al, respectively, the cyclic
behavior disappears and the software can analyze the model.

Al
send(Clear, B.B1);

E Icn nd] flear
i:lear F"'*'t E

' Bz

! {sen disetAAT) ]
A2 |
[ ] \ J

3-30

Note For information about the benefits of directed event broadcasts, see “Broadcast
Events to Synchronize States” (Stateflow).




Support Limitations for Stateflow Software Features

Custom C or C++ Code

The software does not support custom C or C++ code, which the Stateflow software
allows.

Machine-Parented Data

The software does not support machine-parented data (i.e., defined at the level of the
Stateflow machine), which the Stateflow software allows.

For more information, see “Best Practices for Using Data in Charts” (Stateflow).

Textual Functions with Literal String Arguments

The software does not support literal string arguments to textual functions in a Stateflow
chart.

3-31



3 Checking Compatibility with the Simulink Design Verifier Software

Support Limitations for MATLAB for Code Generation

3-32

In this section...

“Unsupported MATLAB for Code Generation Features” on page 3-32

“Support Limitations for MATLAB for Code Generation Library Functions” on page 3-32

Unsupported MATLAB for Code Generation Features

Simulink Design Verifier does not support the following features of the MATLAB Function
block in the Simulink software and MATLAB functions in the Stateflow software. Avoid
using these unsupported features in models that you analyze with Simulink Design
Verifier.

Not Supported Description

Complex numbers The software supports only real numbers and cannot
analyze MATLAB for code generation functions that use
complex numbers.

Characters The software does not support characters, which
MATLAB for code generation allows.

C functions The software does not support calls to external C
functions, which MATLAB for code generation allows.

Extrinsic functions The software supports extrinsic functions only when
they do not affect the output of a MATLAB function.

Handle classes The software does not support handle classes in the

MATLAB Function block. The software does support
value classes.

Support Limitations for MATLAB for Code Generation Library
Functions
Simulink Design Verifier provides various levels of support for MATLAB for code

generation library functions. The software either fully or partially supports particular
functions. It does not support other functions.

If your model contains unsupported functions, you can turn on automatic stubbing, which
considers the interface of the unsupported functions, but not their behavior. However, if



Support Limitations for MATLAB for Code Generation

any of the unsupported functions affect the simulation outcome, the analysis might
achieve only partial results. For details about automatic stubbing, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-8.

To achieve 100% coverage, avoid using unsupported MATLAB library functions in models
that you analyze.

The following table lists Simulink Design Verifier support for categories of library
functions in code generation from MATLAB:

* Software supports functions in that category, indicated by a dash (—).

* Software does not support functions in that category.

* Software supports the function in that category with limitations as specified.

For the complete listing of available functions, see “Functions and Objects Supported for
C/C++ Code Generation — Alphabetical List” (Simulink).

Function Category

Support Notes

Aerospace Toolbox functions Not supported.

Arithmetic operator functions Supported with the following limitations:
mldivide (\) |Supports only scalar arguments.
mpower (*) Supports only integer exponents.
mrdivide (/) |Supports only scalar arguments.
power (.7) Supports only integer exponents.

Bit-wise operation functions —

Casting functions Supported with the following limitations:
char Not supported.
typecast Not supported.

Communications System Toolbox™ functions Not supported.

Complex number functions Not supported.

Computer Vision System Toolbox™ functions Not supported.

Data type functions -

Derivative and Integral functions Not supported.

Discrete math functions

3-33



3 Checking Compatibility with the Simulink Design Verifier Software

Function Category

Support Notes

Error handling functions

Supported with the following limitations:

assert Supported, but does not behave
like a Proof Objective block.
Exponential functions Supported with the following limitations:
exp Not supported.
expm Not supported.
expml Not supported.
log Not supported.
log2 Not supported.
loglo Not supported.
loglp Not supported.
nextpow2 Not supported.
nthroot Not supported.
reallog Not supported.
realpow Not supported.
realsqrt Not supported.
sqrt Not supported.
Filtering and convolution functions Supported with the following limitations:
detrend |N0t supported.
Fixed-Point Designer functions Supported with the following limitations:
complex |Not supported.
Histogram functions Not supported.
Image Processing Toolbox™ functions Not supported.

Input and output functions

Interpolation and computation geometry

Supported with the following limitations:

cart2pol Not supported.
cart2sph Not supported.
pol2cart Not supported.

3-34




Support Limitations for MATLAB for Code Generation

Function Category

Support Notes

sph2cart Not supported.

Linear algebra Not supported.
Logical operator functions -
MATLAB Compiler™ functions Not supported.

Matrix and array functions

Supported with the following limitations:

angle Not supported.
cond Not supported.
det Not supported.
eig Not supported.
inv Not supported.
invhilb Not supported.
logspace Not supported.
lu Not supported.
norm Supported only when invoked

using the syntax
norm(A,p)

where p is either 1 or inf.

normest Not supported.
pinv Not supported.
planerot Not supported.
qr Not supported.
rank Not supported.
rcond Not supported.
subspace Not supported.

Nonlinear numerical methods Not supported.

Polynomial functions Not supported.

Relational operations functions

3-35



3 Checking Compatibility with the Simulink Design Verifier Software

Function Category

Support Notes

Rounding and remainder functions

Set functions

Signal Processing functions in MATLAB

Not supported.

Signal Processing Toolbox™ functions

Not supported.

Special values

Supported with the following limitations:

rand Not supported.
randn Not supported.
Specialized math Not supported.

Statistical functions

String functions

Supported with the following limitations:

char Not supported.
ischar Not supported.
Trigonometric functions Not supported.

3-36




Support Limitations and Considerations for S-Functions and C/C++ Code

Support Limitations and Considerations for S-Functions
and C/C++ Code

In this section...

“Enabling S-Functions in Simulink Design Verifier” on page 3-37
“Support Limitations for S-Functions and C/C++ Code” on page 3-37

“Considerations for Enabling S-Functions and C/C++ Code in Simulink Design Verifier”
on page 3-38

“Source Code Protection” on page 3-38

Enabling S-Functions in Simulink Design Verifier

Simulink Design Verifier supports test case generation for code generated with Embedded
Coder®. Simulink Design Verifier also supports error detection, test case generation, and
property proving for S-Functions that:

* The Legacy Code Tool generates, with
def.Options.supportCoverageAndDesignVerifier set to true.

* The S-Function Builder generates, with Enable support for Design Verifier selected
on the Build Info tab of the S-Function Builder dialog box.

* The function slcovmex compiles, with the option -sldv passed to the function when
compiling the S-function.

For more information on the three approaches, see “Creating C MEX S-Functions”
(Simulink)

Support Limitations for S-Functions and C/C++ Code
* Simulink Design Verifier does not support S-Functions or C/C++ code containing:

* Continuous states. Simulink Design Verifier does not analyze such code.

* Zero-crossing functions. Simulink Design Verifier ignores such code during
analysis.

* Constants that describe INF or NaN objects. Simulink Design Verifier considers
such code as containing floating-point overflow errors. Although Simulink Design
Verifier analysis cannot determine the type of overflow error for such cases, the

3-37



3 Checking Compatibility with the Simulink Design Verifier Software

3-38

analysis can determine which lines of code introduce the incompatibility. Polyspace
can provide more information on why your code contains floating-point overflow
erTors.

You must specify that the signal elements entering the ports of S-Functions compiled
with slcovmex are contiguous. Use the SimStruct function
ssSetInputPortRequiredContiguous.

Considerations for Enabling S-Functions and C/C++ Code in
Simulink Design Verifier

When performing property proving or test generation analysis for models with enabled
S-Functions or C/C++ code generated with Embedded Coder, Simulink Design Verifier
assumes that the code contains no run-time errors. In the case where the code
contains run-time errors (division by zero, access to non-initialized variables, array out
of bounds, and so on), the property proving or test generation analysis can produce
incorrect results. Code that Polyspace proves to be free of run-time errors provide
correct results in Simulink Design Verifier analysis.

If Simulink Design Verifier cannot determine the size of arrays in your code (for
instance for arrays that are dynamically allocated with non-constant size), Simulink
Design Verifier assumes an upper bound for the array. Ensure that the given upper
bound is appropriate.

If you do not enable Simulink Design Verifier support for an S-function, Simulink
Design Verifier stubs the S-function. With S-function support enabled, Simulink Design
Verifier analyzed the content of the S-function to get more detailed information.
Sometimes, Simulink Design Verifier internally stubs the S-function. Internal stubs can
be the result of different C/C++ constructs, such as:

* Calls to library functions (the library function is replaced by a stub).

* Complex pointer operations.

* Casts to or from incompatible or unknown pointer types.

Models containing such constructs are labeled Partially compatible.

Source Code Protection

To analyze the contents of an S-function, information about the implementation of the S-
function, including information derived from the source code, are stored within the
shared object. Although this information is not directly accessible to users, consider



See Also

disabling Simulink Design Verifier support for S-Functions in models that are released
externally if the S-Functions contain sensitive source code.

See Also

“Configuring S-Function for Test Case Generation” | “Generate Test Cases for Embedded
Coder Generated Code” on page 7-29

3-39






Working with Block Replacements

* “What Is Block Replacement?” on page 4-2

* “Built-In Block Replacements” on page 4-6

* “Template for Block Replacement Rules” on page 4-8
* “Define Custom Block Replacements” on page 4-9

» “Execute Block Replacements” on page 4-17



4 Working with Block Replacements

What Is Block Replacement?

4-2

Using Simulink Design Verifier, you can define rules to replace blocks automatically in
your model. For example, you can work around a block that is incompatible with the
software by creating a rule that replaces an unsupported Simulink block in your model
with a supported block that is functionally equivalent. Or, you can customize blocks for
analysis by creating a rule that adds constraints or objectives to particular blocks in your
model.

When performing block replacements, the software makes a copy of your model and
replaces blocks in the copy, without altering your original model. In this way, you can
easily customize a model for analysis.

The Simulink Design Verifier software replaces blocks automatically in a model using:

* Libraries of replacement blocks
* Rules that define which blocks to replace and under what conditions

You replace any block with any built-in block, library block, or subsystem.

Block replacements are extensible, allowing you to define your own libraries of
replacement blocks and custom block replacement rules. Using block replacements, you
can

* Work around an incompatibility, such as the presence of unsupported blocks in your
model.
* Customize a block for analysis, such as:

* Adding constraints to its input signals
* Adding objectives to its output signals
* Eliminating the contents of a subsystem or Model block to simplify your analysis

Note You can use automatic stubbing as an alternative to block replacements to resolve
incompatibilities. Automatic stubbing replaces unsupported blocks with elements that
have the same interface. For more information, see “Handle Incompatibilities with
Automatic Stubbing” on page 2-8.




What Is Block Replacement?

Block Replacement Effects on Test Generation

Replacing blocks can affect test case generation if the replaced blocks share functionality
with other parts of your model. Before you replace blocks, understand functional
dependencies on those blocks or on shared signals. See “Highlight Functional
Dependencies” on page 16-2. Replacement blocks can also affect other analysis
workflows such as property proving.

For example, you can customize a block for analysis using a replacement block that adds
objectives to an input signal. If another subsystem depends on that signal, the
replacement block effectively adds an objective for the subsystem.

In this example, the breakpoint range of ul in the 2-D Lookup Table is 5—7. The switch
threshold 8 falls outside the ul lookup table range.

2D Ty
(1) p| 1
>
2 * u2 out1
In2
2D Lockup
Table
(32 » =\
> ()
> — -
In4

Switch

Tests generated without replacing the 2D Lookup Table satisfy two objectives: that the
trigger is not greater than the Switch block threshold 8, and that the trigger is greater
than the Switch block threshold 8.

4-3



4 Working with Block Replacements

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

. Analysis
# Type Model Item Description Time (sec) Test Case
1 Decision  |Switch trigger = llluesholcl false (output 15 ) 1
— from 3rd wmput port)
P Decision  |Switch trigger = .lluesholcl true (output 1s ) >
— from 1st input port)

Test generation with block replacement returns a different analysis. The
blkrep rule lookup2D normal.m block replacement rule replaces the 2D Lookup
Table with a masked subsystem containing the 2D Lookup Table and a verification

subsystem.
2-D Tiu)
L1} | Ui
CO— > o
In2
2D Lockup Table

o
\—> m O

Verification Subsystem

The verification subsystem constrains the analysis within the breakpoint bounds of the
table. The additional constraints prevent generating tests that exercise the second
objective for the Switch block. The condition that the input signal In1 > 8is
unsatisfiable.

4-4



What Is Block Replacement?

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

S i Analysis
# Type Model Item Description Toase: () Test Case
1 Decision  1Switch tngge-f = ﬂJIeshcld false (output is 0 i
R from 3rd input port)

Objectives Proven Unsatisfiable

Simulink Design Verifier proved that there does not exist any test case exercising these test objectives. This often
indicates the presence of dead-logic in the model. Other possible reasons can be inactive blocks in the model due to
parameter configuration or test constraints such as grven using Test Condition blocks. In rare cases. the
approximations performed by Simulink Design Verifier can make objectives impossible to achieve.

# Type Aodel Item Description %nl;l:;::c} Test Case
2 Decision  |Swiich RTIBEET = ﬂueshcld e fpralpet 0 n'a
from 1st input port)




4 Working with Block Replacements

Built-In Block Replacements

The Simulink Design Verifier software provides a set of block replacement rules and a
corresponding library of replacement blocks. Use these built-in block replacements when
analyzing models. They serve as examples that you can examine to learn how to create
your own block replacements.

The following table lists the factory default block replacement rules, available in the
matlabroot\toolbox\sldv\sldv\private folder. There are two implementations of
each factory-default block replacement rule. Rules whose file names end with _normal.m
replace blocks with Subsystem blocks. Rules whose file names end with configss.m
replace blocks with Configurable Subsystem blocks.

File Name Description
blkrep rule lookup normal.m A rule that replaces 1-D Lookup Table blocks with
_ an implementation that includes test objectives for
blkrep_rule_lookup_configss.m each breakpoint and interval specified by the
Breakpoints parameter.

blkrep rule lookup2D normal.m A rule that adds Test Condition/Proof Assumption

_ blocks to the input ports of 2-D Lookup Table
blkrep rule lookup2D configss.m blocks. Each Test Condition/Proof Assumption block

constrains signal values to the interval specified by
the corresponding breakpoint vector.

blkrep rule mpswitch2 normal.m A rule that adds a Test Condition/Proof Assumption
_ . block to the control input port of Multiport Switch
blkrep_rule mpswitch2 configss.m blocks whose Number of data ports parameter is

2. The Test Condition/Proof Assumption block
constrains signal values to the interval [1, 2] (or [0,
1] if the block uses zero-based indexing).

blkrep rule mpswitch3 normal.m A rule that adds a Test Condition/Proof Assumption
_ . block to the control input port of Multiport Switch
blkrep_rule mpswitch3 configss.m blocks whose Number of data ports parameter is

3. The Test Condition/Proof Assumption block
constrains signal values to the interval [1, 3] (or [0,
2] if the block uses zero-based indexing).

4-6



Built-In Block Replacements

File Name

Description

blkrep rule mpswitch4 normal.m

blkrep rule mpswitch4 configss.m

A rule that adds a Test Condition/Proof Assumption
block to the control input port of Multiport Switch
blocks whose Number of data ports parameter is
4. The Test Condition/Proof Assumption block
constrains signal values to the interval [1, 4] (or [0,
3] if the block uses zero-based indexing).

blkrep rule mpswitch5 normal.m

blkrep rule mpswitch5 configss.m

A rule that adds a Test Condition/Proof Assumption
block to the control input port of Multiport Switch
blocks whose Number of data ports parameter is
5. The Test Condition/Proof Assumption block
constrains signal values to the interval [1, 5] (or [0,
4] if the block uses zero-based indexing).

blkrep rule switch normal.m

blkrep rule switch configss.m

A rule that replaces Switch blocks with an
implementation that includes test objectives,
requiring that each switch position be exercised
when the values of the first and third input ports
are different.

blkrep rule selector
IndexVecPort normal.m

blkrep rule selector
IndexVecPort configss.m

A rule that adds a Test Condition/Proof Assumption
block to the index port of Selector blocks whose
Index Option parameter is Index vector
(port). The Test Condition/Proof Assumption block
constrains signal values to an interval whose
endpoints are derived from the values of the
Selector block's Input port size and Index mode
parameters.

blkrep rule selector
StartingIdxPort normal.m

blkrep rule selector
StartingIdxPort configss.m

A rule that adds a Test Condition/Proof Assumption
block to the index port of Selector blocks whose
Index Option parameter is Starting index
(port). The Test Condition/Proof Assumption block
constrains signal values to an interval whose
endpoints are derived from the values of the
Selector block's Input port size, Output size, and
Index mode parameters.

The library of replacement blocks that corresponds to the factory default rules is

matlabroot/toolbox/sldv/sldv/sldvblockreplacementlib


matlab:open_system([matlabroot,'/toolbox/sldv/sldv/sldvblockreplacementlib'])

4 Working with Block Replacements

Template for Block Replacement Rules

4-8

To help you create block replacement rules, Simulink Design Verifier provides an
annotated template that contains a skeleton implementation of the requisite callbacks:

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

To create a block replacement rule, make a copy of the template and edit the copy to
implement the desired behavior for the rule you are creating. The comments in the
template provide hints about how to use each section. For a tutorial on using the template
to write custom block replacements rules, see “Write Block Replacement Rules” on page
4-10.


matlab:edit([matlabroot,'/toolbox/sldv/sldv/sldvblockreplacetemplate.m'])

Define Custom Block Replacements

Define Custom Block Replacements

In this section...

“Basic Workflow for Defining Custom Block Replacements” on page 4-9
“Specify Replacement Blocks” on page 4-9

“Write Block Replacement Rules” on page 4-10

“Replace Multiport Switch Blocks” on page 4-10

Basic Workflow for Defining Custom Block Replacements

To replace certain blocks in your model in a way that the factory-default block
replacement rules do not handle, create custom block replacement rules by completing
the following tasks:

* “Specify Replacement Blocks” on page 4-9
* “Write Block Replacement Rules” on page 4-10

Specify Replacement Blocks

A replacement block can be one of the built-in blocks in the Simulink model library or a
block in a user-created library.

In Simulink Design Verifier, replacement blocks have the following restrictions:

* They must be built-in blocks or subsystems.
* They cannot be Model blocks, nor can they include any Model blocks.

Note A Model block cannot be a replacement block, but you can replace Model blocks
with built-in blocks or subsystems.

* They must reside in a block library that is available on your MATLAB search path.

» If the replacement block is a subsystem, any Inport and Outport blocks must have the
default names (Inl and OQut1l).

After constructing your replacement block, write a custom block replacement rule.

4-9



4 Working with Block Replacements

4-10

Write Block Replacement Rules

Block replacement rules have the following restrictions:

* The function that represents a block replacement rule must include particular
callbacks. Use the block replacement rule template as a starting point for writing a
custom rule. (See “Template for Block Replacement Rules” on page 4-8.)

* The function that represents a block replacement rule must be on the MATLAB search
path.
Replace Multiport Switch Blocks

* “Why Replace Multiport Switch Blocks?” on page 4-10
» “Create the Library and Replacement Block” on page 4-11
* “Write the Rule for the Replacement Block” on page 4-13

Why Replace Multiport Switch Blocks?

A Multiport Switch block has one control input port and one or more data input ports; the
default number of data inputs is 3.

i
Elia §
= 2

—
Multiport Switch

LT A YAV AY

A model may have test objectives on some blocks whose output is directly or indirectly
connected to the Multiport Switch block. For example, a Saturation block may send data
to the control input port. In this case, the analysis may create test cases that satisfy those
objectives. However, those test cases may create values that are out of range for the
control input port, regardless of whether the Multiport Switch block uses zero-based
indexing or one-based indexing. This causes the simulation to fail.

In this example, you create a rule to replace all Multiport Switch blocks that have two
data inputs and do not use zero-based indexing. The replacement block is a subsystem
that has a Test Condition block that constrains the value of the control input to 1 or 2, so
that the analysis does not create out-of-range data input values. This allows the analysis
to satisfy the objectives on blocks that are connected to the control input port of the
Multiport Switch block.



Define Custom Block Replacements

Create the Library and Replacement Block

Create a user library and specify the replacement block as a masked subsystem:

In the Simulink Library Browser, select File > New > Library.

In your library, create a subsystem named myReplacementBlock to represent your
replacement block.

3 Inside myReplacementBlock, add two Inport blocks so that the subsystem has three
input ports and one output port.

¥
=
P2
=
5
-

In3

b4

myH eplacementBlock

4 Add a Multiport Switch block and a Test Condition block to the subsystem. Set the
block parameters as follows.

* In the Multiport Switch block, set the Number of data ports parameter to 2.
* In the Test Condition block, set the Values parameterto {[1, 2]}.

1. 2%
— »

00
é

El
[l

Multiport
Switch

5 To create a mask for your subsystem, from the top-level model, right-click
myReplacementBlock. From the context menu, select Mask > Create Mask.

6 In the Mask Editor, specify the following information:

* In the Parameters pane, define a mask parameter named InputSameDT as
shown.

4-11



4 Working with Block Replacements

4-12

This parameter replicates the behavior of the Require all data port inputs to
have the same data type parameter of the underlying Multiport Switch block.

| Mask Editor : myReplacementBlock E@
Icon & Ports| Parameters & Dialog | Initialization | Documentation
Controls Dialog box Property editor
Parameter Type Prompt Mame = Properties
=+ %< MaskType> DescGroupWar Name InputsameDT
m] - %o=MaskDescription= DescTextVar Value O
= =l Parameters ParameterGroupVar Prompt Require all data ...
Display = Attributes
@ Drag or double-click item; in left palett_etn add to dialog. Evaluate
Use Delete key to remove items from dialog. Tunable
Read only [
- Hidden [
Action Mever save 0
B Dialog
Enable
Visible
Callback Pl
E Layout
Itern location  |Mew row
[ Unrmask ] ’ Preview ] | oK | ’ Cancel ] ’ Help ] ’ Apply l

* In the Initialization pane, in the Initialization commands field, enter

commands to specify that the subsystem inherit the InputSameDT parameter
value of the top-level model:

maskInputSameDT = get param(gcb, 'InputSameDT');
blkName = sprintf('/Multiport\nSwitch');

targetBlock = [gcb, blkName];
set param(targetBlock, 'InputSameDT',maskInputSameDT);




Define Custom Block Replacements

7

Save your block library as a model file called custom_rule in a folder on your
MATLAB search path.

Write the Rule for the Replacement Block

To write a rule for the replacement block:

1

Open the block replacement rule template

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

Make a copy of the file and save it as custom_rule switch.m in a folder on your
MATLAB search path.

Note Execute steps 3 through 11 for the copy of the template that you saved.

To declare a function custom rule switch and modify its help, modify the first few
lines of the template:

function rule = custom rule switch
%CUSTOM RULE_SWITCH Custom block replacement rule for
%Simulink

Design Verifier

This block replacement rule identifies Multiport
Switch blocks whose "Number of inputs" parameter
specifies '2' and "Use zero-based indexing" parameter
specifies 'off'. It replaces such blocks with an
implementation that includes a Test Condition block
on the control input signal.

d® 0 o° o° o o° of

The function name must match its file name, without the . m extension. The comments
that follow the function declaration create help for this rule.

Specify the type of block that you want to replace in your model by specifying its
BlockType parameter as the rule.blockType object. For this example, change the
rule.blockType object to 'MultiPortSwitch':

%% Target Block Type

o°

rule.BlockType = 'MultiPortSwitch';

Note You can use the get param function to obtain the value of the BlockType
parameter for the block that you want to replace.

4-13


matlab:edit([matlabroot,'/toolbox/sldv/sldv/sldvblockreplacetemplate.m'])

4 Working with Block Replacements

4-14

Specify the full block path name for the replacement block as the
rule.ReplacementPath object. For this example, to replace Multiport Switch
blocks with the replacement block developed in “Specify Replacement Blocks” on
page 4-9, modify therule.ReplacementPath object using the full block path name:

% Replacement Library

o® o

rule.ReplacementPath = sprintf('custom_rule/myReplacementBlock');

Note To get the full block path name, use the gcb function.

To specify the type of subsystem that the software uses when replacing blocks,
specify a value for the rule.ReplacementMode object. Valid values are:

* Normal — The software replaces blocks with a copy of the subsystem specified by
the rule.ReplacementPath object. This is the default.

* ConfigurableSubSystem — The software replaces blocks with a Configurable
Subsystem block. With the Configurable Subsystem block, you can choose
whether it represents the subsystem specified by the rule.ReplacementPath
object, or the original block before its replacement.

For this example, set rule.ReplacementMode to Normal:

% Replacement Mode

o® o

rule.ReplacementMode = 'Normal’;

Specify parameter values that the replacement blocks inherit from the blocks being
replaced. You achieve inheritance by mapping the parameter names in a structure.
Each field of the structure represents a parameter that the replacement block
inherits. Specify the value of each field using the token $original.parameters$.
parameter is the name of the parameter that belongs to the original block.

To define a structure named parameter that maps the InputSameDT parameter
from the original Multiport Switch blocks to their replacement blocks, change the
content of the Parameter Handling section as follows:

% Parameter Handling

o® o

parameter.InputSameDT = '$original.InputSameDT$"';

% Register the parameter mapping for the rule
rule.ParameterMap = parameter;



Define Custom Block Replacements

Note To determine block parameter names, refer to “Block Libraries” (Simulink).

To define the callback functions, keep the following lines in the file:

% Replacement Test Callback
Customize the local function 'replacementTestFunction' to specify the
conditions under which Simulink Design Verifier replaces blocks when
using this rule. Simulink Design Verifier replaces blocks only when this
local function returns true.

0° o° o° o° o° of

rule.IsReplaceableCallBack = @replacementTestFunction;

% Post Replacement Callback
Customize the local function 'postReplacementFunction' to specify actions
that will be performed after a block is replaced.

The usage of this callback in replacement rules is optional. Simulink
Design Verifier does not enforce its existence in the rule definition.

0° o° o° o° o° o° of

rule.PostReplacementCallBack = @postReplacementFunction;

Customize replacementTestFunction by specifying conditions under which
Simulink Design Verifier replaces blocks in your model.

To instruct the software to replace only the Multiport Switch blocks whose
NumInputPorts parameter is 2 and whose zeroIdx parameter is of f, replace the
existing replacementTestFunction with the following:

function out = replacementTestFunction(blockH)

Specify the logic that determines when the Simulink Design
Verifier software replaces a block in your model. For example,
restrict replacements to only the blocks whose parameters
specify particular values.

o® o° of o° o°

out = false;
numInputPorts = eval(get param(blockH, 'NumInputPorts'));
zeroldx = get param(blockH, 'zeroIdx');
if numInputPorts==2 && strcmp(zeroldx, 'off')
out = true;
end

Because replacementTestFunction executes after the model has been compiled,
you can access parameters such as CompiledPortDataTypes or
CompiledPortDimensions from replacementTestFunction.

For an example of a replacementTestFunction that accesses these parameters,
open the following file:

matlabroot/toolbox/sldv/sldv/private/blkrep rule switch normal.m

4-15


matlab:edit([matlabroot,'/toolbox/sldv/sldv/private/blkrep_rule_switch_normal.m'])

4 Working with Block Replacements

10 Optionally, you can customize postReplacementFunction to specify the actions
the software performs after a block has been replaced.
For an example of a postReplacementFunction, open the following file:

matlabroot/toolbox/sldv/sldv/private/blkrep_rule_selectorIndexVecPort_normal.m

11 Save the edited file and continue to the next section, “Execute Block Replacements”
on page 4-17, to execute your replacement rule.

4-16


matlab:edit([matlabroot,'/toolbox/sldv/sldv/private/blkrep_rule_selectorIndexVecPort_normal.m'])

Execute Block Replacements

Execute Block Replacements

In this section...

“Configure Block Replacements” on page 4-17

“Replace Blocks in a Model” on page 4-18

Configure Block Replacements

You must configure block replacement options before executing block replacements in
your model. To specify block replacement options from the model window:

1
2

Open the sldvdemo param identification model.

Rename this model to my sldvdemo param identification, and saveitina
folder on your MATLAB search path.

In the Model Editor, select Analysis > Design Verifier > Options.

The Configuration Parameters dialog box displays the main pane of the Design
Verifier category.

In the Configuration Parameters dialog box, select Design Verifier > Block
Replacements.

On the Block Replacements pane, select Apply block replacements to enable
block replacements.

Selecting this check box provides access to the List of block replacement rules (in
order of priority) and File path of the output model options.

To execute your custom block replacement rule, follow these steps:
a In the List of block replacement rules (in order of priority) box, delete:

<FactoryDefaultRules>
b  Enter:

custom_rule switch

The Simulink Design Verifier software replaces a block in your model only once. If
multiple rules apply to the same block, the software replaces the block using the rule
with the highest priority.

4-17


matlab: sldvdemo_param_identification

4 Working with Block Replacements

4-18

7 In the File path of the output model field, accept the default to create a model
named my sldvdemo param identification replacement. This model is a
copy of the original model and includes the block replacements.

By default, this software creates a model named $ModelName$ replacement,
where $ModelName$ is the name of the model it is analyzing. To use a different name
for the model with the block replacements, enter the name in this field. You do not
need to include a file extension.

Click Apply.
Save the my sldvdemo param identification model.

Replace Blocks in a Model

* “Replace Blocks and Analyze Model with the Block Replacements” on page 4-18
» “Perform the Block Replacements Only” on page 4-19

Replace Blocks and Analyze Model with the Block Replacements

After enabling the Apply block replacements option, you can start a Simulink Design
Verifier analysis that analyzes the model after executing the block replacements. To
trigger block replacements and start the analysis, do one of the following:

* Select Analysis > Design Verifier > Options, and on the Design Verifier pane, click
Generate Tests.

* In the Model Editor, select Analysis > Design Verifier > Generate Tests > Model.

Note If your model has unsaved changes, Simulink Design Verifier asks if you want to
save the model before executing the block replacements.

The Simulink Design Verifier software copies your model, replaces blocks in the copy,
without altering the original model, and analyzes the model with the replacements.

Upon completing its analysis, you can generate a detailed analysis report that includes
information about the block replacements it executed. For each block replacement, you
can follow a link from the report to the block replacement in the model copy, saved using
the name you specified on the Design Verifier > Block Replacements pane of the
Configuration Parameters dialog box.



Execute Block Replacements

Perform the Block Replacements Only

Replacing the blocks in a model before running the analysis can help you debug the
custom block replacement rules. Once the block replacement rules are working as you
want, analyze the model that contains the block replacements.

To perform only the block replacements, without analyzing the model with the block
replacements, at the command line or from a program, use the sldvblockreplacement
function. Set two parameters of the sldvoptions structure related to replacing blocks,
and call sldvblockreplacement as follows:

opts = sldvoptions;

opts.BlockReplacement = 'on'

opts.BlockReplacementRulesList = ...
"custom _rule switch, <FactoryDefaultRules>';

[status, newmodelH] = sldvblockreplacement(...
'my_sldvdemo param identification', opts);

If you execute block replacements programmatically, in the MATLAB Command Window,
Simulink Design Verifier displays a table that lists available block replacement rules and
opens the copy of the model that contains the block replacements ($ModelName

$ replacement).

The table lists all built-in rules and any custom rules that you specified using the List of
block replacement rules (in order of priority) option (see “Configure Block
Replacements” on page 4-17). The table includes the following information:

e Type

Type of rule, either built-in or custom
 Registration MATLAB File name

Name of the file that expresses the rule
+ Block types

BlockType parameter value of the block that the rule replaces
e Priority

Priority of execution when multiple rules target the same type of block for
replacement

e Active

Flag that indicates whether the rule is active (1) or ignored (0)

4-19



4 Working with Block Replacements

The output also displays information about the block replacements. For example, the
output for this example indicates that the software used the custom_rule switch.m
rule to replace a Multiport Switch block (of the same name) at the top level of the model.

4-20



Specifying Parameter
Configurations

* “Parameter Constraint Values” on page 5-2

* “Define Constraint Values for Parameters” on page 5-5

» “Specify Parameter Constraint Values for Full Coverage” on page 5-12

* “Store Parameter Constraints in MATLAB Code Files” on page 5-24

* “Define Constraint Values for Parameters in MATLAB Code Files” on page 5-27



5 Specifying Parameter Configurations

Parameter Constraint Values

5-2

In this section...

“Parameter Configuration for Analysis” on page 5-2
“Data Types in Parameter Configurations” on page 5-3
“Parameters in Variant Subsystems” on page 5-4

Parameter Configuration for Analysis

Simulink Design Verifier software can treat parameters in your model as variables during
its analysis. For example, suppose you specify a variable that is defined in the MATLAB
workspace as the value of a block parameter in your model. You can instruct Simulink
Design Verifier to use additional values for that parameter in its analysis.

This allows you to, for example:

» Extend the results of a error detection analysis property proof to consider the impact
of additional parameter values.

* Generate comprehensive test cases for situations in which parameter values must vary
to achieve more complete coverage results. For more information, see “Specify
Parameter Constraint Values for Full Coverage” on page 5-12.

If you place a constraint on a parameter in your model, during analysis that parameter
takes only your specified constraint value or values. A group of constraints on parameters
in the same model is also called a parameter configuration.

Use the Parameter Table to manage constraints on your model parameters for analysis. In
the Parameter Table, you can:

* Autogenerate value ranges for parameters in your model. See “Autogenerate
Parameter Constraint” on page 5-15.

* Enter your own value ranges for parameters in your model. See “Define Constraint
Values for Parameters” on page 5-5.

+ Highlight objects in your model that have parameters configured to act as variables
during analysis. See “Highlight Constrained Parameters in Model” on page 5-10.

» Import and export parameter configurations from MATLAB code files. See “Store
Parameter Constraints in MATLAB Code Files” on page 5-24.



Parameter Constraint Values

Note When you configure Simulink Design Verifier to treat parameters as variables in its
analysis, you cannot also use the analysis to extend existing test cases. In Analysis >
Design Verifier > Options, if you specify your model to extend existing test cases with a
Data file and apply parameter configurations with a Parameter configuration file or
the Parameter Table, when you attempt to perform Simulink Design Verifier analysis, the
software reports that your model is incompatible. This occurs because the existing test
cases do not include corresponding parameter values.

Data Types in Parameter Configurations

Consider the following issues related to data types when constraining parameter values:

* “Parameters Cannot Be Structures” on page 5-3

* “Parameters Converted to Fixed Point in the Model” on page 5-3

* “Parameters Defined as Simulink.Parameter and Referenced by Multiple Locations”
on page 5-3

Parameters Cannot Be Structures

If the data type of a parameter in the MATLAB workspace is struct, Simulink Design
Verifier cannot generate values for that parameter during the analysis.

Parameters Converted to Fixed Point in the Model

If your model references a base workspace parameter whose data type is auto, single,
or doub'le, and the model converts that parameter to a fixed-point data type, you must
define the constraints for that parameter according to its fixed-point type.

Parameters Defined as Simulink.Parameter and Referenced by Multiple Locations

For a parameter defined as Simulink.Parameter or an inherited class of
Simulink.Parameter whose data type is auto, if the parameter is referenced by
multiple locations with different data types, Simulink Design Verifier cannot generate
values for that parameter during the analysis.



5 Specifying Parameter Configurations

Parameters in Variant Subsystems

Parameters can be used to select variants in Variant Subsystem blocks. These parameters
are listed in the Parameter Table. However, Simulink Design Verifier only supports
analyzing the active variant.



Define Constraint Values for Parameters

Define Constraint Values for Parameters

In this section...

“Find Parameters and Autogenerate Constraints” on page 5-6
“Edit Parameter Constraints” on page 5-9

“Highlight Constrained Parameters in Model” on page 5-10

Using the Parameter Table, you can find and autogenerate constraints for parameters in
your model. This example uses the following model, which contains Gain and Constant
parameters defined as m and b, respectively.

double double inte ints
@_pb_. Conver )

In1 Ot

Zain

b |Constant

[Variables mand b are defined in the MATLAB workspace. .

The model callback function PreLoadFcn defines m and b in the MATLAB workspace.

3-5



5 Specifying Parameter Configurations

i =)

Maodel Properties: ex_defining_param_configurations_errwarn @
| Main | Callbacks | History | Description

Model callbacks Model pre-load function:

*

PreLoadFcn m= 5

- PostLoadFcn

- InitFen b = Simulink.Farameter;

- StartFcn b.DataType = 'intd';

- PauseFcn b.value = int8(5);

~ ContinueFcn

- StopFon

- PreSaveFcn

- PostSaveFcn

- CloseFcn

oK ] [ Cancel ] [ Help Apply

When the model opens:

* missettob.
* bisaSimulink.Parameter object of type int8 whose value is set to 5.

Find Parameters and Autogenerate Constraints

This example shows how to specify values or ranges of values used for model parameters
during Simulink Design Verifier analysis.



Define Constraint Values for Parameters

Open the Parameter Table.

In the Simulink Editor, select Analysis > Design Verifier > Options. In the Select tree,
choose Design Verifier > Parameters.

Enable the Parameter Table.

In the Parameters pane, select Enable parameter configuration and Use parameter
table.

Find parameters that can be constrained for analysis.

At the bottom of the Parameter Table, click Find in Model. The Parameter Table
searches your model for parameters that can be configured and loads them in the table.

When possible, the Parameter Table autogenerates constraint values for parameters. You
can use these autogenerated values or specify your own constraint.

In this example, in the Parameter Table, rows for model parameters m and b appear.

Parameter table

I Enable ‘ [ Disable ‘ I Clear ‘ [ Highlight in Model ‘

Use MName Constraint Value  Min Max Maodel Element
(] 5 ex_defining_param_configurations_errwarn/Constant
o 5 ex_defining_param_configurations_errwarn/Gain

Each row represents a parameter configuration. You can edit the parameter’s constraint
value(s) in the field under Constraint. To use your specified parameter configuration in
analysis, select the check box in the field under Use. The following table provides more

details about these and other columns in the Parameter Table.

For parameter in row, the column... Shows...

Use Whether specified constraint for parameter
is used in analysis.

To include parameter configuration in
analysis, select the check box. To exclude
parameter configuration from analysis,
clear the selection.

5-7



5 Specifying Parameter Configurations

For parameter in row, the column... Shows...
Name Name of parameter.
Constraint Autogenerated or user-specified constraint

value(s) for parameter.

To change the specified constraint value(s),
double-click in this field and enter new
constraint value(s).

Value Value of parameter. If the parameter is
defined in a Simulink data dictionary that is
linked to the model, the column shows the
value of the parameter in the data
dictionary. Otherwise, it shows the value of
the parameter in the base workspace.

Min Specified minimum value for parameter, if
parameter is of type
Simulink.Parameter and has a specified
minimum value.

Max Specified maximum value for parameter, if
parameter is of type
Simulink.Parameter and has a specified
maximum value.

Model Element Path to model component(s) where
parameter is used.

Note If you use a MATLAB variable from a data dictionary as a model parameter, SLDV
analysis does not consider the parameter as tunable. If you want the parameter to be
tunable for the analysis, use a Simulink.Parameter object for the parameter. To create
a Simulink.Parameter object in the data dictionary:

1 In the Model Explorer, on the Model Hierarchy pane, select the workspace under
the data dictionary that contains your MATLAB variable.

2 Select Add > Simulink Parameter. You see a new variable titled Param in the
workspace.

3 Rename the variable. Assign the same data type as the original MATLAB variable.



Define Constraint Values for Parameters

4 In your model, use the variable that you just created as your parameter.

Edit Parameter Constraints

For each parameter you want to treat as a variable during analysis, specify constraint
values.

In the Parameter Table, in the Constraint column, double-click the field for the
parameter you want to constrain. Enter your constraint values.

For this example:

» For parameter b, specify the value range [4, 10].
* For parameter m, specify the value 3.

Parameter table

[ Enable ] [ Disable ] [ Clear ] [ Highlight in Model ]

Use Name Constraint  Value Min Max Model Element
kil b [4,10] 5 ex_defining_param_configurations_errwarn/Constant
v om ENNENN s | | |ex defining_param_configurations_errwiam/Gain

To enable a parameter configuration for analysis, click to select the row that corresponds
to the configured parameter. Click Enable.

To enable multiple parameter configurations at once, shift-click to select multiple rows,
and click Enable.

To exclude parameter configurations from analysis, click to select the row that
corresponds to the configured parameter. Click Disable.

When you disable a parameter configuration, the specified constraint for this parameter is
not used in analysis.

To disable multiple parameter configurations at once, shift-click to select multiple rows,
and click Disable.

To exclude a parameter configuration from analysis and delete its specified constraint,
click to select the row that corresponds to the configured parameter. Click Clear.

5-9



5 Specifying Parameter Configurations

The Parameter Table clears the specified constraint for the parameter, and the parameter
configuration is excluded from analysis.

To clear multiple parameter configurations at once, shift-click to select multiple rows, and
click Clear.

Highlight Constrained Parameters in Model

Highlight model components that use the parameters for which you have specified
constraints.

Select the parameter(s) you want to highlight in the model.

To select a parameter, click anywhere inside the Name or Constraint columns for either
parameter. Shift-click to select multiple parameters.

Parameter table

[ Enable ] [Disable] [ Clear ] [ Highlight in Model ]

1 Name 1 Constraint J Value  Min Max. Model Element

__ 4,10] _-- ex_defining_param_configurations_errwarn/Constant
B m s 15 | | |exdsinng porom conhguratons ervermGan

Click Highlight in Model.

In the Simulink Editor, model components that use the selected parameters are
highlighted.

5-10



Define Constraint Values for Parameters

double double intl ntl

amver

In1 . Ot
Zain

Constant

Variables m and b are defined in the MATLAB workspace. '

5-11



5 Specifying Parameter Configurations

Specify Parameter Constraint Values for Full Coverage

In this section...

“About This Example” on page 5-12

“Construct Example Model” on page 5-13
“Parameterize Constant Block” on page 5-14
“Preload Workspace Variable” on page 5-14
“Autogenerate Parameter Constraint” on page 5-15
“Analyze Example Model” on page 5-17

“Simulate Test Cases” on page 5-19

About This Example

This example describes how to create and analyze a simple Simulink model, for which you
generate test cases that achieve decision coverage. However, in this example, achieving
complete decision coverage is possible only when Simulink Design Verifier treats a
particular block parameter as a variable during its analysis. This example explains how to
specify parameter configurations for use with the analysis.

The following workflow guides you through the process of completing this example.

Task Description See...

1 Construct the example model. “Construct Example Model” on page 5-13

2 Specify a variable as the value of |“Parameterize Constant Block” on page 5-
a Constant block parameter. 14

3 Constrain the value of the “Autogenerate Parameter Constraint” on
variable that the Constant block |page 5-15
specifies.

4 Generate test cases for your “Analyze Example Model” on page 5-17
model and interpret the results.

5 Simulate the test cases and “Simulate Test Cases” on page 5-19
measure the resulting decision
coverage.

5-12




Specify Parameter Constraint Values for Full Coverage

Construct Example Model

Construct a simple Simulink model to use in this example:

Create an empty Simulink model.
2 Copy the following blocks into the empty Simulink Editor:

* From the Sources library:

* Two Inport blocks to initiate the input signals

* A Constant block to control the switch
* From the Signal Routing library: A Multiport Switch block to provide simple logic
* From the Sinks library: An Outport block to receive the output signal

3 Double-click the Multiport Switch block to access its dialog box and specify its
Number of data ports option as 2.

4 Connect the blocks so that your model looks like the following.

1 »—
Constant
D > &
It Out
In2
Multiport
Switch

Select Simulation > Model Configuration Parameters.

In the Select tree on the left side of the Configuration Parameters dialog box, select
the Solver node. Under Solver selection, set the Type option to Fixed-step, and
then set the Solver option to discrete (no continuous states).

7 Inthe Select tree, select the Diagnostics node. Set Automatic solver parameter
selection to none.

Click OK to apply your changes and close the Configuration Parameters dialog box.
Save your model as ex_defining params_example for use in the next procedure.

5-13



5 Specifying Parameter Configurations

Parameterize Constant Block

Parameterize the Constant block in your model by specifying a variable as the value of the
Constant block's Constant value parameter:

1 Double-click the Constant block.

2 In the Constant value box, enter A.

3 Click OK to apply your change and close the Constant block parameter dialog box.
4

Save your model.

Preload Workspace Variable

Preload the value of the MATLAB workspace variable A referenced by the Constant block:

1 Select File > Model Properties > Model Properties.
2 (Click the Callbacks tab.
3 Inthe PreLoadFcn, enter:

A = int8(1);

4 Click OK to close the Model Properties dialog box and save your changes.
Close your model.

6 Open your model.

When you open the model, the PreLoadFcn defines a variable A of type int8 whose

value is 1.
ini
# [ |
A i |
Constant
1 double
1 L e {1
C e )
In1 Cutl
double *, 2
(Er——
In2
Mutiport
Switch

5-14



Specify Parameter Constraint Values for Full Coverage

Autogenerate Parameter Constraint
Use the Parameter Table to constrain the variable A to specified values.

In the Simulink Editor, select Analysis > Design Verifier > Options.

2 In Configuration Parameters dialog box, from the Select tree under Design Verifier,
select Parameters.

3 Select Enable parameter configuration.
Select Use parameter table.
5 At the bottom of the Parameter Table, click Find in Model.

The Parameter Table is populated with parameters from your model. When possible,
it autogenerates constraint values for each parameter, depending on the data type
and location of the parameter in the model.

In this case, a row appears for the parameter A that you defined. The table row for A
displays the following information:
* In the Name column, the parameter name (A).

* In the Constraint column, the constraint specified on parameter A. The
Parameter Table autogenerates the constraint values {1, 2}.

* In the Value column, the value of A in the base workspace. This value is 1.

* In the Model Element column, the model component in which A resides
(ex defining params_example/Constant).

* In the Use column, a check box indicating whether the specified constraint values
in the table are configured for analysis.

5-15



5 Specifying Parameter Configurations

Parameter table

[ Enable ] [ Disable ] ’ Clear ] ’ Highlight in Model l
Parameter table Min Max Model Element
il A {1, 2} -- ex_defining_params_example/Constant

| Findin Model | | Add from File... | [Export to File...|

6 In the Parameter Table, in the row for parameter A, make sure that you select the
Use check box.

When you enable this parameter configuration, during Simulink Design Verifier
analysis, the parameter A takes only the int8 values 1 and 2.
In the Configuration Parameters dialog box, click OK.

Save your model.

5-16




Specify Parameter Constraint Values for Full Coverage

Analyze Example Model

Analyze the model using the parameter configuration you just created, and generate the
analysis report:

1 In the Simulink Editor, select Analysis > Design Verifier > Generate Tests >
Model.
Simulink Design Verifier begins analyzing your model to generate test cases.

2 When the software completes its analysis, in the Simulink Design Verifier Results
Summary window, select Generate detailed analysis report.

The software displays an HTML report named
ex_defining params_example_ report.html.

Keep the Results Summary window open for the next procedure.
3 In the Simulink Design Verifier report Table of Contents, click Test Cases.
Click Test Case 1 to display the subsection for that test case.

5-17



5 Specifying Parameter Configurations

5-18

Test Case 1

Summary

Length: 0 second (1 sample period)

Objectives |

Satisfied:

Objectives

Step Time Model Item Objectives

1 0 Multiport Switch integer input value = 1 (output is from input

port 1)
Generated Parameter Values

Parameter Value
A 1

Generated Input Data

Time |0
Step 1
Inl -
In2 -

This section provides details about Test Case 1 that Simulink Design Verifier

generated to satisfy a coverage objective in the model. In this test case, a value of 1
for parameter A satisfies the objective.

5 Scroll down to the Test Case 2 section in the Test Cases chapter.



Specify Parameter Constraint Values for Full Coverage

Test Case 2
Summary
Length: 0 second (1 sample period)
Objectives |
Satisfied:
Objectives
Step Time Model Item Objectives
i i T =% i
1 0 Multiport Switch integer input value = *_2 (output is from

input port 2)
Generated Parameter Values

Parameter Value
A 2

Generated Input Data

Time |0
Step (1
Inl -
In2 -

This section provides details about Test Case 2, which satisfies another coverage

objective in the model. In this test case, a value of 2 for parameter A satisfies the
objective.

Simulate Test Cases

Simulate the generated test cases and review the coverage report that results from the
simulation:

5-19



5 Specifying Parameter Configurations

1 In the Simulink Design Verifier Results Summary window, select Create harness
model.

The software creates and opens a harness model named
ex _defining params_example harness.

2 The block labeled Inputs in the harness model is a Signal Builder block that contains
the test case signals. Double-click the Inputs block to view the test case signals in the
Signal Builder block.

5-20



Specify Parameter Constraint Values for Full Coverage

u Signal Builder (ex_defining_params_example_harness/Inputs) EI@
File Edit Group Signal Axes Help E

FH| 2R oo | —=TR|E)EFREE » 0o | § M
Active Group; | Test Case 1 v: @, | = E]
1 e B
In1 : ; ; : ; . . ; : |
0 i ¢
) 1) AR s deieees O Lemeaes e R R bemmiaeees s 4
P E— I — W W W I
In2 i i . i ; . : . i i
) Sy

0 i
06 ] A S S ] AR SR S
1 | | | | | i | | | |
0 0.1 0.2 0.3

Lett Pormt

InZz {shown)
Name: In1 T: iE
Index: 1 -] . [ e
ok In1 (#1) [¥Min ¥Max]
3

#
In the Signal Builder dialog box, click the Run all button >

The Simulink software simulates each of the test cases in succession, collects
coverage data for each simulation, and displays an HTML report of the combined
coverage results at the end of the last simulation.

5-21




5 Specifying Parameter Configurations

4 In the model coverage report, review the Summary section:

Summary

Model Hierarchy/Complexity:

D1
1. ex defining params example harness 2 100% e——
2. Test Unit (copied from ex defining params example) 1 100% —

This section summarizes the coverage results for the harness model and its Test Unit
subsystem. Observe that the subsystem achieves 100% decision coverage.

5 In the Summary section, click the Test Unit subsystem.

The report displays detailed coverage results for the Test Unit subsystem.

5-22



Specify Parameter Constraint Values for Full Coverage

2. SubSystem block "Test Unit (copied from ex defining param..."

Parent: /ex_defining_params_example harness
Metric Coverage (this object) Coverage (nc.
8 ] descendants)
Cyclomatic Complexity 0 1
Decision (D1) NA 100% (2/2) decision outcomes

MultiPortSwitch block "Multiport Switch"

ex defining params example harmess/Test Unit (copied from

Parent: ex defining params example)
Metric Coverage

Cyclomatic Complexity 1

Decision (D1) 100% (2/2) decision outcomes

Decisions analyzed:

integer input value 100%
=1 (output is from input port 1) 2/4
= *.2 (output is from input port 2) 2/4

This section reveals that the Multiport Switch block achieves 100% decision coverage
because the test cases exercise each of the switch pathways.

5-23



5 Specifying Parameter Configurations

Store Parameter Constraints in MATLAB Code Files

5-24

In this section...

“Export Parameter Constraints to File” on page 5-24

“Import Parameter Constraints from File” on page 5-26

You can use the Parameter Table to manage constraints on your model parameters for
analysis. If you place a constraint on a parameter in your model, during analysis that
parameter takes only your specified constraint value or values. A group of constraints on
parameters in the same model is also called a parameter configuration. You can store
groups of parameter constraints in a MATLAB code file called a parameter configuration
file. For more information on configuring parameters for Simulink Design Verifier, see
“Define Constraint Values for Parameters” on page 5-5.

To enable parameter configuration, in the Simulink Editor, select Analysis > Design
Verifier > Parameters. In the Parameters pane, select Enable parameter
configuration.

Export Parameter Constraints to File

Using the Parameter Table, you can export parameter constraint values to a MATLAB
code file. If you later want to use the same parameter configuration in a different analysis,
you can import your previously specified parameter constraint values from the MATLAB
code file.

To export parameter constraint values to a file:

1 Open the Parameter Table. In the Simulink Editor, select Analysis > Design Verifier
> Options. In the Select tree, choose Design Verifier > Parameters.

The Parameter Table shows specified constraint values for parameters in your model,
as in the following example screen shot.




Store Parameter Constraints in MATLAB Code Files

Parameter table

[ Enable ] [ Disable ] [ Clear ] [ Highlight in Model
Use Name Constraint  Value  Min Model Element
VI param_01 {0, 1} _-- ex_many_params/Constant
=] param_02 {0, 1} ex_many_params/Constant2
il param_03 {0, 1} 0 ex_many_params/Constantl
[l param_04 {0, 1} 2 ex_many_params/Constant3
’ Find in Model ] ’ Add from File... ] ’Export to File...

2 Click Export to File.

The Parameter Configuration File saves the current parameter configurations toa .m
file with the name you specify. Parameters that do not have the Use check box
enabled appear as commented lines in the parameter configuration file.

In the example shown in the previous step, the parameter configuration file contains
the following code:

function params
params.param 01
% params.param 02 =
params.param 03 =

% params.param 04 = {0,

ex_many params_config
{0, 1};

{0, 01};

{0, 1};

1};

5-25



5 Specifying Parameter Configurations

5-26

Import Parameter Constraints from File

If you defined parameter configurations for analysis in a release prior to R2014a, you can
import corresponding MATLAB files and manage these parameters in the Parameter
Table.

To import parameter constraints from a MATLAB code file:

1 Open the Parameter Table. In the Simulink Editor, select Analysis > Design Verifier
> Options. In the Select tree, choose Design Verifier > Parameters.
2 Click Add from File. Choose a parameter configuration file.

The Parameter Table loads specified parameter constraints from the code, excluding
code comments, from the file. If you specify a constraint for a parameter and then
load a parameter configuration file containing constraint specification for the same
parameter, the constraint specified in the file overwrites the preexisting constraint in
the table.

Simulink Design Verifier provides an example parameter configuration file for the
example model sldvdemo _param_identification:

matlabroot/toolbox/sldv/sldvdemos/sldvdemo param ident config.m



Define Constraint Values for Parameters in MATLAB Code Files

Define Constraint Values for Parameters in MATLAB
Code Files

In this section...

“Template Parameter Configuration File” on page 5-27

“Syntax in Parameter Configuration Files” on page 5-27

To specify parameters as variables for analysis, you can use the Parameter Table or define
parameter configurations in a MATLAB code file. You can also export parameter
configuration files from the Parameter Table. For more information, see “Store Parameter
Constraints in MATLAB Code Files” on page 5-24.

This example shows how to define parameter configurations in a MATLAB code file. For
an example that shows how to define these parameter configurations using the Parameter
Table, see “Define Constraint Values for Parameters” on page 5-5.

Template Parameter Configuration File

The Simulink Design Verifier software provides an annotated template that you can use as
a starting point:

matlabroot/toolbox/sldv/sldv/sldv_params template.m

To create a parameter configuration file, make a copy of the template and edit the copy.
The comments in the template explain the syntax for defining parameter configurations.

To associate the parameter configuration file with your model before analyzing the model,

in the Configuration Parameters dialog box, on the Design Verifier > Parameters pane,
enter the file name in the Parameter configuration file field.

Syntax in Parameter Configuration Files

Specify parameter configurations using a structure whose fields share the same names as
the parameters that you treat as input variables.

For example, suppose you want to constrain the Gain and Constant value parameters, m
and b, which appear in the following model:

5-27


matlab:edit([matlabroot,'/toolbox/sldv/sldv/sldv_params_template.m'])

5 Specifying Parameter Configurations

5-28

doublke doubke antE intd
@_;\D_. Conver D
In

. Ot 1
Gain

b |Constnt

[Variables m and b are defined in the MATLAB workspace. .

The PreLoadFcn callback function defines m and b in the MATLAB workspace when you
open the model:

* missettob.

bisa Simulink.Parameter object of type int8 whose value is set to 5.



Define Constraint Values for Parameters in MATLAB Code Files

i =)

Maodel Properties: ex_defining_param_configurations_errwarn @
| Main | Callbacks | History | Description

Model callbacks Model pre-load function:

*

PreLoadFcn m= 5

- PostLoadFcn

- InitFen b = Simulink.Farameter;

- StartFcn b.DataType = 'intd';

- PauseFcn b.value = int8(5);

~ ContinueFcn

- StopFon

- PreSaveFcn

- PostSaveFcn

- CloseFcn

oK ] [ Cancel ] [ Help Apply

In your parameter configuration file, specify constraints for m and b:

params.b = int8([4 10]);
params.m = {};

This file specifies:

* b is an 8-bit signed integer from 4 to 10. The constraint type must match the type of
the parameter b in the MATLAB workspace, int8, in this example.

5-29



5 Specifying Parameter Configurations

5-30

* mis not constrained to any values.

Specify points using the Sldv.Point constructor, which accepts a single value as its
argument. Specify intervals using the Sldv.Interval constructor, which requires two
input arguments, i.e., a lower bound and an upper bound for the interval. Optionally, you
can provide one of the following values as a third input argument that specifies inclusion
or exclusion of the interval endpoints:

* '()' — Defines an open interval.

¢ '[]1' — Defines a closed interval.

¢ '(]' — Defines a left-open interval.
* '[)' — Defines a right-open interval.

Note By default, Simulink Design Verifier considers an interval to be closed if you omit
this argument.

The following example constrains m to 3 and b to any value in the closed interval [0, 10]:

params.m
params.b

Sldv.Point(3);
Sldv.Interval(0, 10);

If the parameters are scalar, you can omit the constructors and instead specify single
values or two-element vectors. For example, you can alternatively specify the previous
example as:

params.m
params.b

0 10];

Note To indicate no constraint for an input parameter, specify params.m = {} or
params.m = []. The analysis treats this parameter as free input.

You can specify multiple constraints for a single parameter using a cell array. In this case,
the analysis combines the constraints using a logical OR operation.

The following example constrains m to either 3 or 5 and constrains b to any value in the
closed interval [0, 10]:

{3, 5};
[0 10];

params.m
params.b



Define Constraint Values for Parameters in MATLAB Code Files

You can specify several sets of parameters by expanding the size of your structure. For
example, the following example uses a 1-by-2 structure to define two sets of parameters:

{3, 5};
[0 10];

params(1l).m
params(1l).b

params(2).

m {12, 15, Sldv.Interval(50, 60, '()')};
params(2).b

5;

The first parameter set constrains m to either 3 or 5 and constrains b to any value in the
closed interval [0, 10]. The second parameter set constrains m to either 12, 15, or any
value in the open interval (50, 60), and constrains b to 5.

5-31






Detecting Design Errors

* “What Is Design Error Detection?” on page 6-2

* “Derived Ranges in Design Error Detection” on page 6-3

* “Run a Design Error Detection Analysis” on page 6-4

* “Check a Model for Dead Logic” on page 6-9

» “Dead Logic Detection” on page 6-10

* “Detect Dead Logic Caused by an Incorrect Value” on page 6-12

* “Model Objects That Receive Dead Logic Detection” on page 6-15

* “Detect Integer Overflow and Division-by-Zero Errors” on page 6-24

* “Check for Specified Intermediate Minimum and Maximum Signal Values”
on page 6-29

* “Detect Out of Bound Array Access Errors” on page 6-36



6 Detecting Design Errors

What Is Design Error Detection?

6-2

Design error detection is a Simulink Design Verifier analysis mode that detects the
following types of errors:

* Dead logic

* Integer or fixed-point data overflow

* Division by zero

» Intermediate signal values that are outside the specified minimum and maximum
values

* Out of bound array access

Before you simulate your model, analyze your model in design error detection mode to
find and diagnose these errors. Design error detection analysis determines the conditions
that cause the error, helping you identify possible design flaws. Design error detection
analysis also computes a range of signal values that can occur for block outports and
Stateflow local data in your model.

After the analysis, you can:

* Click individual blocks to view the analysis results for that block.
* Create a harness model containing test cases that demonstrate the errors.
* Create an analysis report that contains detailed results for the entire model.



Derived Ranges in Design Error Detection

Derived Ranges in Design Error Detection

When you specify minimum and maximum values for a signal or data in a model
(Simulink), these values define a design range.

During design error detection, the software analyzes the model behavior and computes
the values that can occur during simulation for:

* Block Outports

+ Stateflow local data

The range of these values is called a derived range.

The Use specified input minimum and maximum values parameter in the
Configuration Parameters dialog box, on the Design Verifier pane, if enabled, tells the
analysis to consider the design ranges on the model input ports as constraints when
calculating the derived ranges. By default, the Use specified input minimum and
maximum values parameter is enabled.

If Use specified input minimum and maximum values is disabled, the software does
not restrict the signals when computing the derived ranges.

To see how this process works, consider the following model.

[-35.35] [0..20]

ju| ——C

In this model, the design ranges are:

* Inport block: [-35..35]
* Abs block output: [0..30]

Given the design range on the Inport block, the only possible values for the Abs block
output are values from 0 to 35. Therefore, the derived range for the Abs block is [0..35].

However, if you disable the Use specified input minimum and maximum values
parameter, the analysis calculates the derived ranges based on unrestricted values of the
input ports of the model. In the preceding model, the only valid outputs of the Abs block
are nonnegative numbers. Consequently, the derived range for the Abs block is [0..Inf].

6-3



6 Detecting Design Errors

Run a Design Error Detection Analysis

6-4

In this section...

“Workflow for Detecting Design Errors” on page 6-4
“Understand the Analysis Results” on page 6-4
“Review the Latest Analysis Results in the Model Explorer” on page 6-7

“Check For Design Errors using the Model Advisor” on page 6-7

Workflow for Detecting Design Errors

To analyze your model for design errors, use the following workflow:

Verify that your model is compatible with Simulink Design Verifier software.

2 Ifyou have Stateflow objects in your model, in the Configuration Parameters dialog
box, on the Diagnostics > Stateflow pane, set Unreachable execution path to
error.

3 Specify options that control how Simulink Design Verifier detects design errors in
your model.

Execute the Simulink Design Verifier analysis.
5 Review the analysis results.

Note If you select design error detection for dead logic, you cannot select any other type
of design error detection. For dead logic detection, Simulink Design Verifier performs an
independent analysis. If you want to detect design errors for dead logic and any of the
other types of design errors, you must perform design error detection analysis twice.

Understand the Analysis Results

When you run a design error detection analysis, by default, the software highlights model
objects in one of four colors so that the analysis results are easy to review.



Run a Design Error Detection Analysis

Model Object
Highlighting Color

Analysis Results

Green

One of the following:

* The analysis did not find overflow or division-by-zero errors.
* The analysis did not find dead logic.

* The analysis did not find intermediate or output signals
outside the range of user-specified minimum and maximum
constraints.

* The analysis did not find out of bound array access errors.

Note If your design contains at least one object that Simulink
Design Verifier highlights red, other objects in your model that
are highlighted green may also contain further design errors. If
an object in your design causes run-time errors, Simulink Design
Verifier may not be able to determine further errors on objects
that are downstream of or rely on the results of the object that
causes the run-time errors. Resolve the errors that cause the
initial red highlighting and re-run the analysis to determine if
Simulink Design Verifier will also highlight other objects in your
model as red.

Red

One of the following:

* The analysis found at least one test case that causes overflow
or division-by-zero errors.

* The analysis found dead logic.

* The analysis found intermediate or output signals outside the
range of user-specified minimum and maximum constraints.

* The analysis found at least one test case that causes an out of
bound array access error.




6 Detecting Design Errors

6-6

Model Object Analysis Results
Highlighting Color
Orange For at least one objective, the analysis could not determine if the
model has dead logic, overflow errors, division-by-zero errors,
signals outside the user-specified range, or out of bound array
access errors. This situation can occur when:
* The analysis times out.
* The software cannot determine if an error occurred or not.
This result is due to:
* Automatic stubbing errors; for more information, see
“Handle Incompatibilities with Automatic Stubbing” on
page 2-8.
* Limitations of the analysis engine.
Gray The model object was not part of the analysis.

The Simulink Design Verifier Results window initially displays a summary of the analysis
results, as in the following example.

'p'i Results: sldvdemo_design_error_detection — O >

5/7 objectives are valid.

Results:

Design error detection completed normally.

2/7 objectives are falsified - needs simulation.

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (FDF)
* Create harness model

* Export test cases to Simulink Test

When you click an object in the model, additional details about the results for that object
are displayed in the Simulink Design Verifier Results window.




Run a Design Error Detection Analysis

Tip By default, the Simulink Design Verifier Results window is always the topmost visible

window. To change that setting, click the & icon and on the context menu, clear the
check mark next to Always on top.

Review the Latest Analysis Results in the Model Explorer

If you close the analysis results to fix the cause of the errors in your model, you might
need to rereview the analysis results. As long as your model remains open, you can view
the results of your most recent analysis results in the Model Explorer.

After you close your model, you can no longer view any analysis results.

To view the latest results, in the model window, select Analysis > Design Verifier >
Latest Results. The Model Explorer opens with the results displayed on the right-hand
pane.

For any Simulink Design Verifier analysis, from the Model Explorer, you can perform the
following tasks:

* Highlight the analysis results on the model.

* Generate a detailed analysis report.

* Create the harness model, or if the harness model already exists, open it.

Note If no objectives are falsified, you cannot create the harness model.
* View the data file.
* View the log file.

Check For Design Errors using the Model Advisor

You can perform design error detection analysis from the Model Advisor, which is
particularly useful if you need to perform other model checks. To analyze your model from
the Model Advisor, follow this high-level workflow:

1  Specify options that control how Simulink Design Verifier detects design errors in
your model.

2  Open the Model Advisor.



6 Detecting Design Errors

6-8

3 From the system hierarchy, select the model or model component you want to analyze

Expand the design error detection analysis items. Look for Simulink Design Verifier
under either By Product or By Task.

5 If you have not checked your model for compatibility, enable the compatibility check
for Simulink Design Verifier.

Select the design error detection checks you want to run.
Run the selected checks.
Review the analysis results.

See Also

More About
. “Select and Run Model Advisor Checks” (Simulink)



Check a Model for Dead Logic

Check a Model for Dead Logic

In this section...

“Analyze Models for Dead Logic” on page 6-9
“Common Causes of Dead Logic” on page 6-9
“Dead Logic Analysis Results” on page 6-9

Analyze Models for Dead Logic

Detecting Dead Logic vs. Dead and Active Logic

Workflow for Dead Logic Detection
Common Causes of Dead Logic

Dead Logic Analysis Results

6-9



6 Detecting Design Errors

Dead Logic Detection

6-10

In this section...

“Detect Dead Logic Only” on page 6-10

“Detect Dead and Active Logic” on page 6-11

Design error detection for dead logic in Simulink Design Verifier consists of two analysis
options:

Detection of dead logic only. If you select this option, Simulink Design Verifier does not
report active logic or undecided objectives. If you select this option, Simulink Design
Verifier analyzes your model without floating-point to rational number conversion
approximation or while loop approximation. For more information about
approximations in Simulink Design Verifier, see “Approximations” on page 2-21.

This option is available in:

* Model Advisor. See “Check For Design Errors using the Model Advisor” on page 6-
7.

* The Configuration Parameters dialog box.

Detection of active logic. Active logic detection runs concurrently with dead logic
detection. In rare cases, active logic detection can also find additional dead logic. This
option is available in the Configuration Parameters dialog box.

Detect Dead Logic Only

To detect dead logic if you are not using the Model Advisor:

In the Simulink Editor, select Analysis > Design Verifier > Options

In the Configuration Parameters dialog box, in the Select tree, under Design
Verifier, select Design Error Detection

In the Design Error Detection pane, select Dead logic.

Clear Identify active logic if it is selected.
Click OK to apply these settings and close the Configuration Parameters dialog box.
In the Simulink Editor, select Analysis > Design Verifier > Detect Design Errors.




See Also

Detect Dead and Active Logic

In the Simulink Editor, select Analysis > Design Verifier > Options

2 In the Configuration Parameters dialog box, in the Select tree, under Design
Verifier, select Design Error Detection

3 Inthe Design Error Detection pane, select Dead logic and then Identify active
logic.

Click OK to apply these settings and close the Configuration Parameters dialog box.
5 In the Simulink Editor, select Analysis > Design Verifier > Detect Design Errors.

See Also

More About

. “Design Verifier Pane: Design Error Detection” on page 15-51

6-11



6 Detecting Design Errors

Detect Dead Logic Caused by an Incorrect Value

6-12

In this section...

“Analyze the Fuel System Model” on page 6-12
“Review the Results and Trace to the Model” on page 6-13
“Investigate the Cause of the Dead Logic” on page 6-14

“Update the Input Constraint and Re-Analyze the Model” on page 6-14

Dead logic detection helps you to identify:

* Model design errors.

* Extraneous model elements.

* Model elements that should be executed, but are not.

In this example, you analyze a fuel rate controller model to determine if the model

contains dead logic. Dead logic detection finds the incorrect variable value that causes a
transition condition in a Stateflow chart to remain inactive.

Analyze the Fuel System Model
1 Open the model by entering
sldvdemo fuelsys logic simple

Ensure that the current folder is writable.

2 Configure dead logic detection. Open the model configuration parameters, and select
the Design Verifier options.

Select Design Error Detection options.
4 Select Dead logic. Clear Identify active logic. Click OK.

In the Simulink menu, select Analysis > Design Verifier > Detect Design Errors >
Model.

6 The results dialog box shows that there are 2/109 objectives that are dead logic.




Detect Dead Logic Caused by an Incorrect Value

PL Results: sldvdemo_fuelsys_logic_simple — O *

Design error detection completed normally.
2/10% objectives are dead logic.
107/109 objectives are active logic.

Results:

* Detailed analysis report: (HTML) (FDF)

Review the Results and Trace to the Model

1 Create an analysis report. From the results inspector window, click HTML.

2 Scroll to the Dead Logic section under Design Error Detection Objectives
Status. The table lists two instances of dead logic.

3 In the Description column, one of the dead logic instances is the false condition of
press < zero_thresh. The dead logic result indicates that in the simulation, the
false condition was not executed. This logic is part of the
Sens Failure Counter.INC transition.

4  Click the Model Item link. Simulink highlights the transition in the chart.

5 peed_Sensor_Mode

peed==0 & press < zero_thresh]/

i Sens_Failure_Counter. INC i
| ‘={speed_norm speed_fail |
! entry: fail_state[ SPEED] = 0 entry: fail_state[SPEED] = 1 | !
| 1':5 [speed > 0]/ i
! \ Sens_Failure Counter.DEC i

'
e

6-13



6 Detecting Design Errors

6-14

Investigate the Cause of the Dead Logic

1

The logical statement controlling the transition is

speed==0 & press < zero thresh
Return to the report. Scroll to the Constraints section.

The value of the input control logic/Input Data "press" is constrained from
0 through 2. Click the link to open the input in the Model Explorer.

Select the Model Workspace in the Model Explorer. In the contents table, select
zero_thresh. The value of zero_thresh is 250.

Given the constrained value of press, it is always less than zero_thresh and
therefore, the false condition is never exercised.

Update the Input Constraint and Re-Analyze the Model

1 Change the value of zero thresh to 0.250.

2  Reanalyze the model. In the Simulink menu, select Analysis > Design Verifier >
Detect Design Errors > Model.

3 Inthe new results, the objective is no longer dead logic.

See Also

Related Examples

“Dead Logic Detection” on page 6-10



Model Objects That Receive Dead Logic Detection

Model Objects That Receive Dead Logic Detection

Model objects that have decision or condition outcomes receive dead logic detection, as
the following table shows. Click a link in the first column to get more detailed information
about the outcomes for specific model objects.

Model Object Receiving Dead Logic Decision Outcomes Condition Outcomes
Detection

“Abs” on page 6-16

“Dead Zone” on page 6-16

“Discrete-Time Integrator” on page 6- |e
17

“Enabled Subsystem” on page 6-17 °

“Enabled and Triggered Subsystem” on |e
page 6-18

“Fcn” on page 6-18 °

“For Iterator, For Iterator Subsystem” |e
on page 6-18

“If, If Action Subsystem” on page 6-19 |e

“Library-Linked Objects” on page 6-19 |e

“Logical Operator” on page 6-19
“MATLAB Function” on page 6-19
“MinMax” on page 6-20

“Model” on page 6-20

“Multiport Switch” on page 6-20

“Rate Limiter” on page 6-20

“Relay” on page 6-21

“Saturation” on page 6-21
“Stateflow Charts” on page 6-22
“Switch” on page 6-22

“SwitchCase, SwitchCase Action
Subsystem” on page 6-22

6-15



6 Detecting Design Errors

6-16

Model Object Receiving Dead Logic Decision Outcomes Condition Outcomes
Detection
“Triggered Models” on page 6-22 °

“Triggered Subsystem” on page 6-23

“While Iterator, While Iterator °
Subsystem” on page 6-23

Abs

The Abs block has decision outcomes based on:

+ Input to the block being less than zero.
» Data type of the input signal.

For input to the block being less than zero, there are two decision outcomes:

» Block input is less than zero, indicating a true decision.
» Block input is not less than zero, indicating a false decision.

If the input data type to the Abs block is uint8, uint16, or uint32, the software sets
the block output equal to the block input without making a decision. If the input data type
to the Abs block is Boolean, an error occurs.

Dead Zone

The Dead Zone block has decision outcomes based on these parameters:

o Start of dead zone
* End of dead zone

The Start of dead zone parameter specifies the lower limit of the dead zone. For the
Start of dead zone parameter, there are two decision outcomes:

» Block input is greater than or equal to the lower limit, indicating a true decision.
* Block input is less than the lower limit, indicating a false decision.

The End of dead zone parameter specifies the upper limit of the dead zone. For the End
of dead zone parameter, there are two decision outcomes:



Model Objects That Receive Dead Logic Detection

* Block input is greater than the upper limit, indicating a true decision.
* Block input is less than or equal to the upper limit, indicating a false decision.

Discrete-Time Integrator

The Discrete-Time Integrator block has decision outcomes based on these parameters:

* External reset
* Limit output

If you set External reset to none, the software does not report decision outcomes.
Otherwise, there are two decision outcomes:

* Block output is reset, indicating a true decision.
» Block output is not reset, indicating a false decision.

If you do not select Limit output, the software does not report decision outcomes.
Otherwise, the software reports decision outcomes for the Lower saturation limit and
the Upper saturation limit.

For the Upper saturation limit, there are two decision outcomes:

» Integration result is greater than or equal to the upper limit, indicating a true
decision.

* Integration result is less than the upper limit, indicating a false decision.
For the Lower saturation limit, there are two decision outcomes:

» Integration result is less than or equal to the lower limit, indicating a true decision.
* Integration result is greater than the lower limit, indicating a false decision.

Enabled Subsystem

The Enabled Subsystem block has two decision outcomes:

* Block is enabled, indicating a true decision.
* Block is disabled, indicating a false decision.

The Enabled Subsystem block has two condition outcomes only if the enable input is a
vector:

6-17



6 Detecting Design Errors

6-18

* Element of the enable input is true, indicating a true condition.
* Element of the enable input is false, indicating a false condition.

Enabled and Triggered Subsystem

The Enabled and Triggered Subsystem block has two decision outcomes:

» Trigger edge occurs while the block is enabled, indicating a true decision.

» Trigger edge does not occur while the block is enabled, or the block is disabled,
indicating a false decision.

The software determines condition outcomes for the enable input and the trigger input
separately.

* For the enable input:

* Input is true, indicating a true condition.
* Input is false, indicating a false condition.
* For the trigger input:

* Trigger edge occurs, indicating a true condition.
+ Trigger edge does not occur, indicating a false condition.

Fcn

The Fcn block has two condition outcomes based on input values or arithmetic
expressions that are inputs to Boolean operators in the block:

* Input to a Boolean operator is true, indicating a true condition.
» Input to a Boolean operator is false, indicating a false condition.

For Iterator, For Iterator Subsystem

The For Iterator block and For Iterator Subsystem have two decision outcomes:

+ Iteration value being at or below the iteration limit, indicated as true.
+ Iteration value being above the iteration limit, indicated as false.



Model Objects That Receive Dead Logic Detection

If, If Action Subsystem

The If blocks that causes an If Action Subsystem to execute has:

* Decision outcomes for the if condition and all elseif conditions defined in the If
block.

* Condition outcomes if the if condition or any of the elseif conditions contains a
logical expression with multiple conditions.

Library-Linked Objects

Simulink blocks and Stateflow charts that are linked to library objects receive the same
dead logic detection that they would receive if they were not linked to library objects.

Logical Operator

The Logical Operator block has two condition outcomes:

* Input is true, indicating a true condition.

* Input is false, indicating a false condition.

MATLAB Function

The following MATLAB Function block statements have decision outcomes:

* Function header - Function or sub-function that is executed.

+ 1if - Expression evaluates to true, indicating a true decision. Expression evaluates to
false, indicating a false decision.

* switch - Decision outcomes corresponding to every switch case path, including the
fall-through case.

+ for - Loop condition evaluates to true, indicating a true decision. Loop condition
evaluates to false, indicating a false decision.

* while - Loop condition evaluates to true, indicating a true decision. Loop condition
evaluates to false, indicating a false decision.

The following logical conditions have condition outcomes:

6-19



6 Detecting Design Errors

6-20

* if statement conditions
* while statement conditions

MinMax

The MinMax block has decision outcomes based on passing each input to the output of
the block.

For passing each input to the output of the block, there are two decision outcomes:

* Input passed to block output, indicating a true decision.
» Input not passed to block output, indicating a false decision.

Model

The Model block itself does not have decision or condition outcomes. The model that the
block references receive the decision or condition outcomes.

Multiport Switch

The Multiport Switch block has decision outcomes based on passing each input, excluding
the first control input, to the output of the block.

For passing each input, excluding the first control input, to the output of the block, there
are two decision outcomes:

+ Input passed to block output, indicating a true decision.
* Input not passed to block output, indicating a false decision.

Rate Limiter

The Rate Limiter block has decision outcomes based on the Rising slew rate and Falling
slew rate parameters.

For the Rising slew rate, there are two decision outcomes:

* Block input changes more than or equal to the rising rate, indicating a true decision.
* Block input changes less than the rising rate, indicating a false decision.



Model Objects That Receive Dead Logic Detection

For the Falling slew rate, there are two decision outcomes:

» Block input changes less than or equal to the falling rate, indicating a true decision.
* Block input changes more than the falling rate, indicating a false decision.
The software does not have Falling slew rate outcomes for a time step when the Rising

slew rate is true.

Relay

The Relay block has decision outcomes based on the Switch on point and the Switch off
point parameters.

For the Switch on point, there are two decision outcomes:

* Block input is greater than or equal to the Switch on point, indicating a true
decision.

* Block input is less than the Switch on point, indicating a false decision.
For the Switch off point, there are two decision outcomes:

» Block input is less than or equal to the Switch off point, indicating a true decision.
* Block input is greater than the Switch off point, indicating a false decision.

The software does not have Switch off point decision outcomes for a time step when the
switch on threshold is true.

Saturation

The Saturation block has decision outcomes based on the Lower limit and Upper limit
parameters.

For the Upper limit, there are two decision outcomes:

* Block input is greater than or equal to the upper limit, indicating a true decision.
* Block input is less than the upper limit, indicating a false decision.

For the Lower limit, there are two decision outcomes:

* Block input is greater than the lower limit, indicating a true decision.

6-21



6 Detecting Design Errors

6-22

* Block input is less than or equal to the lower limit, indicating a false decision.

The software does not have Lower limit decision outcomes for a time step when the
upper limit is true.

Stateflow Charts

The Stateflow Chart block has decision outcomes:

» Transition decision is evaluated as true, indicating a true decision.
» Transition decision is evaluated as false, indicating a false decision.

The Stateflow Chart block has condition outcomes:

* Condition is evaluated as true, indicating a true condition.
* Condition is evaluated as false, indicating a false condition.

Switch

The Switch block has decision outcomes based on the control input to the block.
For the control input to the block, there are two decision outcomes:

* Control input evaluates to true, indicating a true decision.
* Control input evaluates to false, indicating a false decision.
SwitchCase, SwitchCase Action Subsystem

The SwitchCase block and SwitchCase Action Subsystem have two decision outcomes:

* Block evaluates to true, indicating a true decision.
* Block does not evaluate to true, indicating a false decision.

Triggered Models

The Triggered Models block has two decision outcomes:

* Referenced model is triggered, indicating a true decision.



Model Objects That Receive Dead Logic Detection

* Referenced model is not triggered, indicating a false decision.
If the trigger input is a vector, then there are two condition outcomes:

» Element of the trigger port is true, indicating a true condition.
* Element of the trigger port is false, indicating a false condition.

Triggered Subsystem

The Triggered Subsystem block has two decision outcomes:

» Block is triggered, indicating a true decision.
* Block is not triggered, indicating a false decision.

If the trigger input is a vector, then there are two condition outcomes:

* Element of the trigger edge is true, indicating a true condition.
* Element of the trigger edged is false, indicating a false condition.

While Iterator, While Iterator Subsystem

The While Iterator block and While Iterator Subsystem have two decision outcomes:

* while condition is satisfied, indicating a true decision.
* while condition is not satisfied, indicating a false decision.

6-23



6 Detecting Design Errors

Detect Integer Overflow and Division-by-Zero Errors

6-24

In this section...

“About This Example” on page 6-24
“Analyze the Model” on page 6-24
“Review the Analysis Results” on page 6-25

About This Example
The following sections describe how to analyze the

sldvdemo cruise control fxp fixed model for integer overflow and division-by-
ZEero errors.

Analyze the Model

Open and check model for integer overflow and division-by-zero errors:

Open the sldvdemo cruise control fxp fixed model.
Select Analysis > Design Verifier > Options.

In the Configuration Parameters dialog box, in the Select tree under Design
Verifier, select the Design Error Detection node.

On the Design Error Detection pane, select:

* Integer overflow
* Division by zero

In the Configuration Parameters dialog box, on the Diagnostics > Data Validity
pane, set Signals > Wrap on overflow, Signals > Saturate on overflow and
Parameters > Detect overflow to error.

Click OK to save these settings and close the Configuration Parameters dialog box.
Select Analysis > Design Verifier > Detect Design Errors > Model.

When the analysis is complete:

The software highlights the model with the analysis results.

The Simulink Design Verifier Results dialog box opens and displays a summary of the
analysis.




Detect Integer Overflow and Division-by-Zero Errors

Review the Analysis Results

* “Review the Results on the Model” on page 6-25
* “Review the Harness Model” on page 6-27
* “Review the Analysis Report” on page 6-27

Review the Results on the Model

The derived ranges can help you understand the source of an error by identifying the
possible signal values, as you can see by taking the following steps:

1 At the top level of the sldvdemo cruise control fxp fixed model, click the
Fixed-Point Controller subsystem.
The Simulink Design Verifier Results window displays the derived range of possible
signal values for the Outports, as calculated by the analysis:
* The values of Outport 1 (throt) range from —2.6101 to 2.6096.
* The values of Outport 2 (target) range from 0 to 255.9960.
'D'E Results: sldvdemo_cruise_control_fup_fixed - O X
~
Back to summary
sldvdemo_cruise_control_fxp_fixed/Fixed-Point Controller
Derived Ranges:
Outport 1: [-2.610107421875..2.609619140625]
Outport 2: [0..255.99609375]

Click the Outport blocks of the sldvdemo cruise control fxp fixed model to
see the same signal bound values.

3 Open the Fixed-Point Controller subsystem.

Two objects in this subsystem are outlined in red. The PI Controller subsystem is
outlined in green.

Click the Sum block, outlined in red, that provides the error input to the PI Controller
subsystem.

6-25



6 Detecting Design Errors

5

6-26

A sl fi_End Il s
+ error throt -

Pl Controller

This Sum block can produce an overflow error. The analysis found a test case that can

result in a computation where the output of the Sum block exceeds the range [-
128..127.9960].

'D'} Results: sldvdemo_cruise_control_fxp_fixed — O >
- R
Back to summary

sldvdemo_cruise_control_fxp_fixed/Fixed-Point Controller/Suml
Overflow ERROR - View test case

Derived Ranges:
Cutport 1: [-128..127.99609375]

To more fully understand this error, click the two blocks that provide the inputs to the
Sum block. In the Simulink Design Verifier Results window, view their derived ranges:
* The third Outport from the Bus block has a range of [0..256].

* The Outport from the Switch block has a range of [0..256].

You can see that the sum operation for these signal ranges can compute a value that
exceeds the range [-128..128] for the Outport of the Sum block.

The analysis reports the overflow error on the Sum block. The analysis does not
propagate this error and assumes that the Sum block output is within the valid range
for any subsequent computations.

Click the PI Controller subsystem, outlined in green. None of the blocks in the PI
Controller subsystem can produce overflow or division-by-zero errors. When the



Detect Integer Overflow and Division-by-Zero Errors

software analyzes the PI Controller subsystem, it ignores the overflow error from the
Sum block and assumes that the inputs to the subsystem are valid.

Keep the sldvdemo cruise control fxp fixed model open. In the next section, you
create the harness model to see the test case that generates the Sum block overflow
erTor.

Review the Harness Model

To see the test cases that demonstrate the errors, generate the harness model from the
Simulink Design Verifier Results window:

1

In the sldvdemo_cruise control fxp_ fixed model, open the Fixed-Point
Controller subsystem.

Click the Sum block, outlined in red, that provides the error input to the PI Controller
subsystem.

The Simulink Design Verifier Results window displays information that an overflow
error occurred.
In the Simulink Design Verifier Results window, click View test case.

The software creates a harness model containing the test case with the signal values
that cause this overflow error.

In the harness model, the Signal Builder dialog box opens, with Test Case 2
displayed.

Click the Start simulation button to simulate the model with this test case.

As expected, the simulation fails due to an overflow error at the Sum block in the
Fixed-Point Controller subsystem.

For more information, see “Simulink Design Verifier Harness Models” on page 13-17.

Review the Analysis Report

To view an HTML report containing detailed information about the analysis report for the
sldvdemo cruise control fxp fixed model:

1

2

In the Simulink Design Verifier Results window, to redisplay the results summary,
click Back to summary.

Click Generate detailed analysis report.

6-27



6 Detecting Design Errors

6-28

The software generates a detailed analysis report that opens in a browser.

For the sldvdemo cruise control fxp fixed model, the Design Error Detection
Objectives Status chapter of the report provides detailed results in two categories:

Objectives Proven Valid — Model objects that did not produce errors

Objectives Falsified with Test Cases — Model objects for which test cases
generated errors

For more information, see “Simulink Design Verifier Reports” on page 13-28.



Check for Specified Intermediate Minimum and Maximum Signal Values

Check for Specified Intermediate Minimum and
Maximum Signal Values

In this section...

“Overview of Specified Minimum and Maximum Signal Values” on page 6-29
“About This Example” on page 6-30

“Create the Example Model” on page 6-30

“Analyze the Model” on page 6-32

“Review the Analysis Results” on page 6-32

Overview of Specified Minimum and Maximum Signal Values

During a design error detection analysis, the software checks the specified minimum and
maximum values on intermediate signals throughout the model and on the output ports.
These values define the design ranges.

The analysis checks for specified minimum and maximum values on:

» Simulink block outputs, with the exception of the limitations described in the next
section

* Simulink.Signal objects

» Stateflow data objects

* MATLAB for code generation data objects

* Global data store writes

If the analysis detects that a signal exceeds the design range, the results identify where in

the model the errors occurred. In addition, you can generate a harness model that
contains test cases that demonstrate how the error occurred.

Limitations of Checking Specified Minimum and Maximum Signal Values

If you analyze a model checking if specified minimum and maximum values are exceeded,
the software cannot check minimum and maximum values specified on:

* Any Mux block with an output connected to a Selector block
* Merge block inputs

6-29



6 Detecting Design Errors

6-30

To work around this limitation, use a Simulink.Signal object on the Merge block
output and specify the range on the Simulink.Signal object.

Note For information about how a Simulink Design Verifier analysis handles specified
minimum and maximum values on input ports, see “Minimum and Maximum Input
Constraints” on page 11-2.

About This Example

In this section, you create and analyze a model that has specified design minimum and
maximum values on:

* The input ports
* The output ports of two of the intermediate blocks

The design error detection analysis identifies blocks where the output values exceed the
design range. If the analysis detects this error, this example demonstrates how the
analysis uses the specified minimum and maximum values when continuing the analysis.

Create the Example Model

Create the model for this example:

1 In the model window, select File > New > Model.

2  From the Simulink Commonly Used Blocks library, add the following blocks to the
model and assign the indicated parameter values.

Block Tab Parameter Value
Inport Signal Attributes |Minimum 0
Inport Signal Attributes | Maximum 5

Gain Main Gain 5

Gain Signal Attributes |Output minimum |0
Gain Signal Attributes |Output maximum |20
Gain Signal Attributes |Output data type |int16
Saturation Main Upper limit 25




Check for Specified Intermediate Minimum and Maximum Signal Values

9

Block Tab Parameter Value
Saturation Main Lower limit -25
Saturation Signal Attributes |Output minimum |-25
Saturation Signal Attributes |Output maximum |25
Outport No changes

Connect the four blocks as shown.

O/ F——

Im1 . 5 Ot
Gain Saturation

To display the specified minimum and maximum values in the model window, select
Display > Signals & Ports > Design Ranges.

Select Analysis > Design Verifier > Options.

In the Configuration Parameters dialog box, on the Solver pane, under Solver
selection:

a Set Type to Fixed-step.

The Simulink Design Verifier software does not support variable-step solvers.
b  Set Solverto discrete (no continuous states).
On the Design Verifier pane, set Mode to Design error detection.
On the Design Verifier > Design Error Detection pane:

a Select Check specified intermediate minimum and maximum values.
b Clear the Integer overflow and Division by zero parameters.

In this example, you check only for intermediate minimum and maximum violations.
To save these settings and exit the Configuration Parameters dialog box, click OK.

10 Save the model and name it ex_interim_minmax.

6-31



6 Detecting Design Errors

Analyze the Model

To analyze the example model to identify any intermediate signals that violate the

specified minimum and maximum values, select Analysis > Design Verifier > Detect
Design Errors > Model.

After the analysis is complete:

* The software highlights the model with the analysis results.

0.5 0.0 ) [-25.25
s o /) (D)
Im1

. Ot
Gain Saturation

The Simulink Design Verifier Results dialog box opens and displays a summary of the
analysis.

'D'i Results: ex_interirm_minmax — O *

Design error detection completed normally.
1/2 objective is valid.
1/2 objective is falsified.

Results:

* View tests in Simulation Data Inspector
* Detailed analysis report: (HTML) (FDE)
* Create harness model

* Export test cases to Simulink Test

Review the Analysis Results

* “Review Results on the Model” on page 6-33
* “Review the Harness Model” on page 6-34

* “Review the Analysis Report” on page 6-35

6-32



Check for Specified Intermediate Minimum and Maximum Signal Values

Review Results on the Model

In the model window, the Gain block is colored red and the Saturation block is colored
green. This indicates that:

At least one objective associated with the Gain block was falsified. For this example,
the analysis falsified exactly one objective.

All objectives associated with the Saturation block were satisfied. For this example,
the analysis satisfied exactly one objective.

To understand these results:

1

Click the Gain block.

The Simulink Design Verifier Results window shows that the design range for the
output was [0..20], but the analysis detected an error and generated a test case that
demonstrates that error. Because the design range for the input block is [0..5], when
the input to the Gain block is 5, the output is 25, which exceeds the specified
maximum value on that port.

The analysis computes and displays the derived range to help you understand how
the design range was exceeded.

'D'E Results: ex_interim_minmax — O >
w 9
Back to summary
ex_interim_minmax/Gain
Design Range: [0..20] ERROR - View test case

Derived Ranges:
Qutport 1: [0..25]

Click the Saturation block.

The Simulink Design Verifier Results window shows that the output of the Saturation
block never exceeded the design range [-25..25]. The input to the Saturation block
never exceeded [0..25], which is the derived range that the analysis propagated from
the Gain block.

6-33



6 Detecting Design Errors

6-34

'D'ﬁ Results: ex_interim_minmax — O >
~ 9
Back to summary

ex_interim_minmax/Saturation
Design Range: [-25..25] VALID

Derived Ranges:
Cwutport 1: [0..25]

Review the Harness Model

When the analysis completes, you can create a harness model contains the test cases that
result in errors.

For the example model, view the test case that caused the design range error in the Gain
block:

After the analysis completes and the model is highlighted, click the Gain block.
2 In the Simulink Design Verifier Results window, click View test case.

The software creates a harness model named ex_interim minmax_harness and
opens the Signal Builder block in the harness model that contains the test case.

In the Signal Builder block, one test case, whose signal value is 5, caused the output
of the Gain block to be 25, which exceeds the specified maximum of 20.

3  Before you simulate this test case, in the Configuration Parameters dialog box, on the

Diagnostics > Data Validity pane, set Simulation range checking to warning or
error.

Setting this parameter specifies the diagnostic action to take if Simulink detects
signals that exceed specified minimum or maximum values during simulation.

» Ifyou specify warning, the simulation displays a warning message and continues.
+ Ifyou specify error, the simulation displays an error message and stops.



Check for Specified Intermediate Minimum and Maximum Signal Values

4 Click OK to save your change and close the Configuration Parameters dialog box.

In the Signal Builder block window, click Start simulation to simulate the model
with this test case.

As expected, in the MATLAB window, the simulation displays a warning or error that
the output value of the Gain block exceeds the specified maximum.

Review the Analysis Report

You can also generate an HTML report containing detailed information about the analysis
report for the ex_interim minmax model. To create this report, in the Simulink Design
Verifier Results window, click Generate detailed analysis report. The analysis report
opens in a browser.

In the analysis report, the Design Error Detection Objectives Status chapter of the
report provides detailed results in two categories:

* Objectives Proven Valid — The output values for the Saturation block are always
within the design range.

* Objectives Falsified with Test Cases — The output values for the Gain block violated
the design range.

6-35



6 Detecting Design Errors

Detect Out of Bound Array Access Errors

6-36

In this section...

“Design Error Detection for Out of Bound Array Access” on page 6-36
“Detect Out of Bound Array Access in Example Model” on page 6-37

“Limitations of Support for Out of Bound Array Access Design Error Detection” on page
6-42

Design Error Detection for Out of Bound Array Access

Simulink Design Verifier design error detection analysis detects out of bound array access
errors in your model. In simulation, when your model attempts to access an array element
using an invalid index, an out of bound array access error occurs.

To detect out of bound array access errors in your model:

1

o U A W N

In the Simulink Editor, select Analysis > Design Verifier > Options.

The Configuration Parameters dialog box opens to the Design Verifier pane.
Under Analysis options, from the Mode list, select Design error detection.
In the Select tree, under Design Verifier, select Design Error Detection.
Select Out of bound array access.

Click OK.

In the Simulink Editor, select Analysis > Design Verifier > Detect Design Errors
> Model.

The Simulink Design Verifier log window opens, showing the progress of the analysis.

When the analysis is complete:

* The software highlights the model with the analysis results.

* The Simulink Design Verifier Results dialog box opens and displays an analysis
summary.




Detect Out of Bound Array Access Errors

Detect Out of Bound Array Access in Example Model

This example shows how to detect out of bound array access errors in the
sldvdemo_array bounds example model.

1 At the MATLAB command prompt, type:
sldvdemo_array bounds

The example model opens.

6-37



6 Detecting Design Errors

Simulink Design Verifier
Design Error Detection for Out of Bound Array Access

L B

3] miinld ol y—»(1 )

fun Outl
o) ol dog
@ AmayDp Matlab
In P
U
™
minldc > minlc@ * oy———»(2 )
] u A ‘-C] Out2
fon maxldx L
Computeindec

Y

Y

Outa

h 4

This example shows you how to statically detect out of bound array emors using Simulink Design Verifier.

This model contains emors that result from using 1-based indices in a 0-based Stateflow array.

Run View Options More Information
{double-click) {double-click) {double-click)
Run Simulink Design Verifier View Simulink Design Verifier Options View Documentation

Using input signal values, the ComputeIndex MATLAB Function block determines a
range of indices with minimum minIdx and maximum maxIdx. The ArrayOp Matlab,
ArrayOp MAL, and ArrayOp_SF blocks use the set of integer indices between minIdx
and maxIdx to access array elements and perform array operations.

6-38



Detect Out of Bound Array Access Errors

In this example model, the analysis options are configured for out of bound array
access error detection. To view these options, double-click the View Simulink
Design Verifier Options button.

2 Start the design error detection analysis by double-clicking the Run Simulink
Design Verifier button.

The Simulink Design Verifier log window opens, displaying the progress of the
analysis.

When the analysis is complete, the example model is highlighted with the analysis

results.
= U
[12¢4]
] miinldze 4l y——»( 1)
fun Out1
o i
@ [T2e] A ayDp Matlab
In -
{1
[ied] 3
minl s - minl@ y—»(2)
o u ‘—D Out2
[ fion ot doe | el ize
Computelndex ArrayCp_MAL

ArrayDp SF

3 View the analysis results inside the chart by double-clicking the ArrayOp SF Chart
block, highlighted in red.

6-39



6 Detecting Design Errors

sldvdemu_arra}r_bcuunds ¥ [JArrayOp_SF

(Diff R
en:

y = u[maxldx] - u[minldx];

\. /

4

See detailed analysis results for the Diff state in the Simulink Design Verifier Results
window by selecting the Diff state. That state is highlighted in red.

PL Results: sldvdema_array_bounds — O *

~

Back to summary

ArrayOp_SF.Diff

Array bounds: u ERROR - View test case
Array bounds: u ERROR - View test case

Simulink Design Verifier detected index out of bound errors for array u in state Diff.
Click the first View test case link.

Simulink Design Verifier creates and opens a harness model that contains test cases,
or input signal groups, that demonstrate out of bound array access errors.

6-40



Detect Out of Bound Array Access Errors

In the Signal Builder dialog box, click Start simulation to simulate the harness
model with Test Case 1.

The simulation stops just before entering the state Diff. The Stateflow Debugger
opens. The following error is shown:

Runtime error: Index into array out of range
Model Name: sldvdemo_array bounds harness
Block Name: sldvdemo_array bounds harness/...
Test Unit (copied from sldvdemo_array bounds)/ArrayOp SF
Attempted to access 4 element of data u(#188 (0:3:0))...
The valid index range is 0 to 3

Keep the Stateflow Debugger open at this breakpoint.

In the sldvdemo array bounds harness model, hold your cursor over the Diff
state to see the data values at this simulation breakpoint.

Diff
en:

y = u[maxldx] - u[minldx];

®

Data used by Diff:

maxIdx = 1
minIdx = 4
u =

1

1

0

-1
y=0

Using Test Case 1 input signal values, the Computelndex MATLAB Function block
determines the range of array indices to be 1:4. One-based indexing is consistent

6-41



6 Detecting Design Errors

6-42

with MATLAB syntax, so these indices are valid for the ArrayOp Matlab MATLAB
Function block and the ArrayOp MAL Stateflow chart.

The ArrayOp_ SF Stateflow chart uses C as the action language, which does not
support one-based indexing. 1:4 is not a valid index range for array access in that
chart. The valid index range for array access in that chart is 0: 3, as the error
message reported. When either maxIdx or minIdx evaluates to 4, an out of bound
array access error occurs in the ArrayOp SF Chart block.

For more information on zero-based indexing support, see “Differences Between
MATLAB and C as Action Language Syntax” (Stateflow).

Limitations of Support for Out of Bound Array Access Design
Error Detection

Inf Index Values

Design error detection does not support indexing by Inf. If your model attempts to
access an array using an index value that evaluates to Inf, design error detection does
not report an out of bound array access error, but in simulation, an out of bound array
access error occurs.

Index Vector Block with Scalar Data Input

Out of bound array access design error detection does not support Index Vector blocks
with scalar data inputs. If your model includes an Index Vector block that specifies a
scalar data input instead of a vector data input and the control input causes an out of
bounds array access, design error detection does not report an error, but an error occurs
in simulation.



Generating Test Cases

* “What Is Test Case Generation?” on page 7-2

» “Workflow for Test Case Generation” on page 7-4

* “Generate Test Cases for Model Decision Coverage” on page 7-5

* “Use Test Generation Advisor to Identify Analyzable Components” on page 7-22
* “Generate Test Cases for Embedded Coder Generated Code” on page 7-29

* “Model Coverage Objectives for Test Generation” on page 7-32



7 Generating Test Cases

What Is Test Case Generation?

The Simulink Design Verifier software can generate test cases that satisfy coverage
objectives for your model, including:

* “Decision” on page 7-32

* “Condition” on page 7-32

*+ “MCDC” on page 7-33

Test cases help you confirm model performance by demonstrating how the blocks in the
model execute in different modes. When generating test cases, the software performs a

formal analysis of your model. After completing the analysis, the software provides
several ways for you to review the results.

Test Case Blocks

For customizing test cases for your Simulink models, Simulink Design Verifier provides
two blocks:

» The Test Objective block defines the values of a signal that a test case must satisfy.
* The Test Condition block constrains the values of a signal during analysis.

Test Case Functions

To customize test cases for a Simulink model or Stateflow chart, Simulink Design Verifier
provides two MATLAB functions. You can use these functions in a MATLAB Function
block. Both functions are active in generated code and in Simulink Design Verifier.

+ sldv.test — Specifies a test objective.

* sldv.condition — Specifies a test condition.

These functions:

* Identify mathematical relationships for testing in a form that can be more natural than
using block parameters.

* Support specifying multiple objectives, assumptions, or conditions without
complicating the model.

* Provide access to the power of MATLAB.

7-2



What Is Test Case Generation?

* Support separation of verification and model design.

For an example of how to use these functions, see the sldv.test or sldv.condition
reference page.

Note Simulink Design Verifier blocks and functions are saved with a model. If you open
the model on a MATLAB installation that does not have a Simulink Design Verifier license,
you can see the blocks and functions, but they do not produce results.




7 Generating Test Cases

Workflow for Test Case Generation

To generate test cases for your model, use the following workflow.

Task Description For an example, see
1 Verify that your model is compatible |“Check Compatibility of the Example
for use with Simulink Design Verifier. [Model” on page 7-6
2 Optionally, use the Test Generation |“Use Test Generation Advisor to
Advisor to select model components |Identify Analyzable Components” on
(atomic subsystems and model page 7-22
blocks) for test generation. Before
test generation, you can use the
results to better understand your
model, particularly large models,
complex models, or models for which
you are uncertain of the test
generation compatibility.
3 If you have Stateflow objects in your
model, in the Configuration
Parameters dialog box, on the
Diagnostics > Stateflow pane, set
Unreachable execution path to
error.
4 Optionally, instrument your model “Customize Test Generation” on page
with blocks or MATLAB functions 7-17
that specify test objectives and test
conditions.
5 Specify options that control how “Configure Test Generation Options”
Simulink Design Verifier generates |on page 7-7
test cases for your model.
6 Execute the Simulink Design Verifier |“Analyze the Example Model” on
analysis. page 7-8 and “Reanalyze the
Example Model” on page 7-19
7 Review the analysis results. “Review Analysis Results” on page 7-

8




Generate Test Cases for Model Decision Coverage

Generate Test Cases for Model Decision Coverage

In this section...

“Construct the Example Model” on page 7-5

“Check Compatibility of the Example Model” on page 7-6
“Configure Test Generation Options” on page 7-7
“Analyze the Example Model” on page 7-8

“Review Analysis Results” on page 7-8

“Customize Test Generation” on page 7-17

“Reanalyze the Example Model” on page 7-19

“Analyze Contradictory Models” on page 7-21

Construct the Example Model

Construct a model for this example:

Create a Simulink model.
2 Copy the following blocks into your empty model window:
* From the Sources library, an Inport block to initiate the input signal whose value
Simulink Design Verifier controls.

* From the Sources library, two Constant blocks to serve as Switch block data
inputs.

* From the Signal Routing library, a Switch block to provide simple logic.
* From the Sinks library, an Outport block to receive the output signal.

3 In your model, double-click one of the Constant blocks and specify its Constant
value parameter as 2.

4 Connect the blocks so that your model appears similar to the following diagram.

7-3



7 Generating Test Cases

1

Constant

.":—\
CoOr—] v+
Il . Cutl
™
Switch
2
Constanti

In the model window, select Simulation > Model Configuration Parameters.

On the left side of the Configuration Parameters dialog box, in the Select tree, click
the Solver category. On the right side, under Solver selection:

* Set the Type option to Fixed-step.

* Set the Solver option to Discrete (no continuous states).

Simulink Design Verifier analyzes only models that use a fixed-step solver.
Click OK to save your changes and close the Configuration Parameters dialog box.
Save your model with the name ex_generate test cases example.

Check Compatibility of the Example Model

Every time Simulink Design Verifier analyzes a model, before the analysis begins, the
software performs a compatibility check. If your model is not compatible, the software
cannot analyze it.

Before you start the analysis, you can also make sure that your model is compatible with
Simulink Design Verifier software:

1
2

Open the ex _generate test cases example model.

In the model window, select Analysis > Design Verifier > Check Compatibility >
Model.

The software displays the log window, which states whether or not your model is
compatible for analysis.

The model you just created is compatible.



Generate Test Cases for Model Decision Coverage

Simulink Design Verifier Results Summary: ex_generate_test_cases_example X

]

22-Jun-2017 13:23:58

Checking compatibility for test generation: model
'ex_generate_test_cases_example'

Compiling model...done

Checking compatibility...done

22-Jun-2017 13:24:09
'ex_generate_test_cases_example' is compatible for test generation
with Simulink Design Verifier.

Save Log | Generate Tests Close

What If a Model Is Partially Compatible?

If the compatibility check indicates that your model is partially compatible, your model
contains at least one object that Simulink Design Verifier does not support. You can
analyze a partially compatible model, but, by default, the unsupported objects are
stubbed out. The results of the analysis can be incomplete.

For detailed information about automatic stubbing, see “Handle Incompatibilities with
Automatic Stubbing” on page 2-8.

Configure Test Generation Options

Configure Simulink Design Verifier to generate test cases that achieve 100% decision
coverage for the ex _generate test cases example model:

1 Openthe ex generate test cases example model.

7-7



7 Generating Test Cases

In the model window, select Analysis > Design Verifier > Options.

On the left side of the Configuration Parameters dialog box, in the Select tree, click
the Design Verifier category. Under Analysis options, set the Mode option to Test
generation.

4  On the left side of the Configuration Parameters dialog box, in the Select tree, click
the Test Generation category.

5 On the Test Generation pane, set the Model coverage objectives parameter to
Decision.

For this example, the analysis generates test cases that record only decision
coverage.

The Test suite optimization parameter is set by default to CombinedObjectives.
If you want to generate fewer but longer test cases, select LongTestcases for the
Test suite optimization parameter.

Click OK to save your changes and close the Configuration Parameters dialog box.
7 Save the ex _generate test cases example model.

Analyze the Example Model

To analyze the ex _generate test cases example model, in the model window, select
Analysis > Design Verifier > Generate Tests > Model. The Simulink Design Verifier
software begins analyzing your model to generate test cases.

During the analysis, the log window shows the progress of the analysis. It displays
information such as the number of test objectives processed and which objectives are
satisfied.

Review Analysis Results

When the software completes its analysis, the log window displays the following options
for reviewing the results.



Generate Test Cases for Model Decision Coverage

Simulink Design Verifier Results Summary: ex_generate_test_cases_example *
Progress |
Objectives processed 22
Satisfied 2
Unsatisfiable 0
Elapsed time 0:12
Test generation completed normally.
2/2 objectives are satisfied.
Results:
* Highlight analysis results on model
= View tests in Simulation Data Inspector
= Detailed analysis report: (HTML) (FDF)
* Create harness model
* Export test cases to Simulink Test
* Simulate tests and produce a model coverage report
Data saved in: ex_generate test cases example sldvdata.mat
in folder: H:\Documents\MATLAB\sldv_output
‘ex_generate test cases example
View Log Close

The following sections describe how you can review the analysis results:

* “Review Analysis Results on the Model” on page 7-10
* “Review Detailed Analysis Report” on page 7-11



7 Generating Test Cases

» “Review Harness Model” on page 7-13

* “Simulate Tests and Produce a Model Coverage Report” on page 7-14
* “View sldvData File” on page 7-16

* “Review Analysis Results in the Model Explorer” on page 7-16

Review Analysis Results on the Model
Highlight the analysis results on the example model:

1 In the log window for the ex _generate test cases example analysis, click
Highlight analysis results on model.

Constant —
L _B.
CO— D
In1 Ot 1
™0
2
Constanti

The Switch block is outlined in green, which indicates that the Switch block has test
cases that satisfy its test objectives.

The Simulink Design Verifier Results window opens. As you click objects in the model,
this window changes to display detailed analysis results for that object. By default,
the Simulink Design Verifier Results window is always the topmost visible window. To

allow the window to move behind other window, click @ and clear Always on top.

7-10



Generate Test Cases for Model Decision Coverage

'B'i Results: ex_generate_test_cases_example — O >

Test generation completed normally.
2/2 objectives are satisfied.

Results:

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (PDF)
* Create harness model

* Export test cases to Simulink Test
* Sirmulate tests and produce a model coverage report

2 Click the highlighted Switch block.

The Simulink Design Verifier Results window indicates that the analysis generated
test cases for both test objectives:

* trigger > threshold
* trigger < threshold

'Di Results: ex_generate_test_cases_example

Back to summary
ex_generate_test cases_example/Switch

trigger = threshold false (output is from 3rd input
port)

trigger > threshold true (output is from 1st input
port)

SATISFIED - View test case

SATISFIED - View test case

For more information about highlighted analysis results on a model, see “Highlighted
Results on the Model” on page 13-2.

Review Detailed Analysis Report

Create a detailed HTML analysis report:

7-11



7 Generating Test Cases

7-12

In the Simulink Design Verifier log window, in Detailed analysis report, click HTML.

The HTML report opens in a browser window.

The report includes the following Table of Contents. Click a hyperlink to navigate to
a section in the report.

Table of Contents

1. Summary
Analysis Information

Test Ohjectives Status
Maodel ltems
Test Cases

LT | | |2

In the Table of Contents, click Summary to display the report's Summary chapter.

The Summary chapter lists information about the model and the status of the
objectives—satisfied or not.

In the Table of Contents, click Analysis Information to display the Analysis
Information chapter.

The Analysis Information chapter provides information about:

* The model that you analyzed.
* The options that you specified for the analysis.
* Approximations the software performed during the analysis.

In the Table of Contents, click Test Objectives Status to display the report's
Test Objectives Status chapter.

This table indicates that the analysis satisfied both test ohjectives associated with the
Switch block in the ex generate test cases example model, for which it
generated two test cases.

Under the table Test Case column, click 2 to display the Test Case 2 section.

This section provides details about a test case that the analysis generated to achieve
an objective in your model. This test case achieves test objective 1, when the Switch
block passes its third input to its output port. Specifically, the software determines
that a value of -1 for the Switch block control signal causes the block to pass its third
input as the block output.



Generate Test Cases for Model Decision Coverage

For more information about the HTML reports, see “Simulink Design Verifier Reports” on

page 13-28.

Review Harness Model

To create a harness model with test cases that satisfy the test objectives in your model, in
the Simulink Design Verifier log window, click Create harness model.

The software creates a harness model named

ex_generate test cases example harness.

Size Type

Test Case 1

=

B

=
- =5)

Ot 1

— )

Out1

Inputs

DoC

[

Text

Test Unit {copied from ex_generate test cases_sample)

Test Case Explanation

The Signal Builder block named Inputs contains the test cases. Double-click the Inputs
block to see the test cases. From the Signal Builder block, you can simulate the model

using the test cases and produce a model coverage report, as described in “Simulate

Tests and Produce a Model Coverage Report” on page 7-14.

For more information about the harness model, see “Simulink Design Verifier Harness
Models” on page 13-17.

If Analysis Generates Many Test Cases

If you have a large model, the analysis might produce a harness model that contains a
large number of test cases.

To perform a more efficient analysis and create easier-to-review results:

1 Set the Test suite optimization parameter to LongTestcases.

2 Rerun the analysis.

In the LongTestcases optimization, the analysis generates fewer but longer test cases
that each satisfy multiple test objectives.

7-13



7 Generating Test Cases

Simulate Tests and Produce a Model Coverage Report
To simulate the harness model using the generated test cases in the harness model:

1 In the harness model, double-click the Inputs block to open the Signal Builder dialog
box.

7-14



Generate Test Cases for Model Decision Coverage

[&] Signal Builder (ex_generate_test_cases_example_harness/Inputs) — O >
File Edit Group Signal Axes Help
FHE| A BRE| o o |~ L[ FREE o0 om | R
Active Group: | | Test Caze 1 v @. = -~
6 In1
5
4+
3 -
2
1 -
or o
I I I I | I I |
i} 0.05 01 015 0.2 0.25 0.3 0.35 0.4
Time (sec)
~
Hame: In1
Index: 1 e
v
Click to select, Shift+click to add | In1 (#1) [ ¥Min ¥Max ]
2

all
In the Signal Builder dialog box, click Run all ﬂ

The software simulates the harness model using both test cases, collects model
coverage information, and displays a coverage report. The coverage report indicates

7-15




7 Generating Test Cases

7-16

that the test cases record 100% decision coverage for the
ex_generate test cases example model.

You can also simulate the model without creating a harness model. In the Simulink Design
Verifier log window, click Simulate tests and produce a model coverage report.

For more information about model coverage, see “Top-Level Model Coverage Report”
(Simulink Coverage).

View sldvData File

The Simulink Design Verifier data file is a MAT-file that contains a structure named
sldvData. This structure stores all the data that the analysis gathers and produces
during the analysis. You can use the data file to conduct your own analysis or to generate
a custom report.

To view the data file, click the data file name in the log window, in this example,

ex _generate test cases example sldvdata.mat. When you click the file name, a
copy of the sldvData object is instantiated in the MATLAB workspace so that you can
review and manipulate the data.

For more information about Simulink Design Verifier data files, see “Simulink Design
Verifier Data Files” on page 13-10.

Review Analysis Results in the Model Explorer

As long as your model remains open, you can view the results of your most recent
Simulink Design Verifier analysis in the Model Explorer.

In the Simulink Editor, select Analysis > Design Verifier > Results > Active. The
Model Explorer opens. The results of the latest Simulink Design Verifier analysis appear
in the right-hand pane.

For any Simulink Design Verifier analysis, from the Model Explorer, you can perform the
following tasks.

Task For more information

Highlight the analysis results on the model. |“Highlighted Results on the Model” on page
13-2




Generate Test Cases for Model Decision Coverage

Task

For more information

Generate a detailed analysis report.

“Simulink Design Verifier Reports” on page
13-28

Create the harness model, or if the harness
model already exists, open it.

If no test cases were generated during the
analysis, this option is not available.

“Simulink Design Verifier Harness Models”
on page 13-17

View the data file.

“Simulink Design Verifier Data Files” on
page 13-10

View the log file.

“Simulink Design Verifier Log Files” on
page 13-57

After you close your model, you can no longer view analysis results.

Customize Test Generation

You can use the Test Condition block to constrain signals in your model to certain values

during the analysis.

1 At the MATLAB command prompt, enter sldvlib to display the Simulink Design

Verifier library.

Open the Objectives and Constraints sublibrary.
Copy the Test Condition block to your model by dragging it from the Simulink Design

Verifier library to your model window.

4 In the model window, insert the Test Condition block between the Inport and Switch

blocks.

7-17



Generating Test Cases

1

Constant

In1 Cutl

¥

—ao

Switch

=

Constanti

5 Double-click the Test Condition block to access its attributes.

The Test Condition block parameters dialog box opens.

6 In the Values box, enter [-0.1, 0.1]. When generating test cases for this model,
the analysis constrains the signal values, entering the Switch block control port to

the specified range.

7-18



Generate Test Cases for Model Decision Coverage

Block Parameters: Test Condition et
Design Verifier Test Condition (mask) (link)

Constrains signal values in Simulink Design Verifier test cases. The
"Walues' parameter constrains the block input signal. Two element
vectors specify intervals. Cell arrays specify lists. The signal must
satisfy at least one of the values or intervals at every time step.
Example Values:

true

{[01], 2, [45], 6}
{Sldv.Interval(-2, -1), Sldv.Point(0}, Sldv.Interval(0, 1, '()], 1}

Parameters
Enable
Type Test Condition -

Values

[-0.1, 0.1]

Display values
Pass through style (show Outport)

Cancel Help Apply

7  Click OK to save your changes and close the Test Condition block parameters dialog
box.

8 Save your model as ex_generate test cases with tc block and keep it open.

Reanalyze the Example Model
Analyze the ex_generate test cases with tc block model with the Test Condition

block. To observe how the Test Condition block affects test generation, compare the result
of this analysis to the result that you obtained in “Analyze Example Model” on page 5-17.

7-19



7 Generating Test Cases

7-20

In the model window, select Analysis > Design Verifier > Generate Tests >
Model.

The Simulink Design Verifier software displays a log window and begins analyzing
your model to generate test cases. When the software completes the analysis, the log
window displays the options for reviewing the results.

In the Simulink Design Verifier log window, click Generate detailed analysis
report.

To begin reviewing the report, in the Table of Contents, click Summary.

The Summary chapter indicates that Simulink Design Verifier satisfied two test
objectives in the model.

In the Table of Contents, click Analysis Information. Scroll to the bottom of
this chapter, to the Constraints section.

This section lists the Test Condition block that you added to constrain the value of the
Switch block control signal to the interval [-0.1, 0.1].

In the Table of Contents, click Test Objectives Status.

This table indicates that Simulink Design Verifier satisfied both test objectives for the
Switch block through the two test cases generated.

Under the table Test Case column, click 1.

This section provides details about a test case that the software generated to achieve
an objective in your model. This test case achieves test objective 1, when the Switch
block passes its third input to its output port. Although the Test Condition block
restricts the domain of input signals to the interval [-0.1, 0.1], the software
determines that a value of -0.1 for the Switch block control signal satisfies this
objective.

To confirm that the test case achieves 100% decision coverage, open the harness
model.

Double-click the Inputs block to open the Signal Builder dialog box.

all
In the Signal Builder dialog box, click Run all ﬂ

The Simulink software simulates the harness model using both test cases, collects
model coverage information, and displays a coverage report. The Summary section of
the report indicates that Simulink Design Verifier generated test cases that achieve
complete decision coverage for your example model.



Generate Test Cases for Model Decision Coverage

Analyze Contradictory Models

If the analysis produces the error The model is contradictory in its current
configuration, the software detected a contradiction in your model and cannot analyze
the model.

You can have a contradiction if your model has Test Objective blocks with incorrect
parameters. For example, a contradiction can be an objective that states that a signal
must be between 0 and 5 when the signal is the constant 10.

If the software detects a contradiction, all previous results are invalidated and the
software reports that some of the objectives cannot be satisfied.

7-21



7 Generating Test Cases

Use Test Generation Advisor to Identify Analyzable
Components

7-22

In this section...

“Test Generation Advisor” on page 7-22

“Test Generation Advisor Requirements” on page 7-24

“Identify Analyzable Components” on page 7-24

“Analyze and Generate Tests for Model Components” on page 7-24
“Manually Select Components for Testing” on page 7-27

Test Generation Advisor

You can use the Test Generation Advisor to select model components (atomic subsystems
and model blocks) for test generation. The Test Generation Advisor summarizes test
generation compatibility, condition and decision objectives, and dead logic for the model
and model components.

The Test Generation Advisor performs a high-level analysis and fast dead logic detection.
You can use the results to better understand your model before test generation,
particularly for large models, complex models, or models for which you are uncertain of
the test generation compatibility. For example, you can:

* Identify components that are incompatible with test case generation.

* Identify complex components that may be time-consuming to analyze.

» Determine instances of dead logic.

* Get a snapshot of the component hierarchy.

* Get recommended test generation parameters.



Use Test Generation Advisor to Identify Analyzable Components

4 | () [» Seconds per campnnent: @
‘Component Hierarchy "E 'E Component Name: sldv_testgen_advisor

~ € sidv_testgen_advisor
hd o Subsys_Analysable
0 PI Controller el
& Subsys_Complex
0 Subsys_Incompatible

Components processed 5/5

0 Incompatible: 2 o Analyzable: 2 & Complex: 1

Summary of subcomponents in ‘sldv_tesigen_advisor’

Compenent Name Dbjmvu (Cnmllllon Dead Logic jectives Decided
Detected 'b]

sldv_testgen_advisor Q

sldv_testoen_advisor/Subsys Analyvsable (-] mnﬂ
sldv_testgen_advisor/Subsys_Analysable/P1 (] n \H NA
Controller

sldv_testgen_advisor/Subsvs Complex & 15 0 A%
sldv_testgen_advisor/Subsys_Incompatible Q 2 NA NA

Model items that are incompatible:
Message
sldv_testgen_advisor Translation failed: Algebraic loops are not supported in generated code. Use the 'ashow’ command in the
Simulink Debugger to see the algebraic loops

sldv_testgen_advisor Simulink Design Verifier failed to initialize: 'sldv_testgen_advisor/Subsys_Incompatible’ is incompatible for
design error detection with Simulink Design Verifier.

The Test Generation Advisor classifies components as analyzable, complex, or
incompatible.

* Analyzable components are compatible with Simulink Design Verifier. The preliminary

analysis indicates that Simulink Design Verifier might achieve high component
coverage.

Complex components are also compatible with Simulink Design Verifier. However, the
preliminary analysis indicates that Simulink Design Verifier might require more time
and resources to achieve high component coverage due to component complexity or

other factors. For more information, see “Sources of Model Complexity” on page 14-
2.

You cannot generate tests for incompatible components. For more information, see
“Check Model Compatibility” on page 3-2.

The results summary displays specific information about the model and each component:

* Status: The compatibility or complexity
Objectives: The number of condition and decision objectives

L]

7-23



7 Generating Test Cases

7-24

* Dead Logic Detected: The number of instances of dead logic decided during the
analysis. This might not include every instance of dead logic.

* Objectives Decided: The percentage of condition and decision objectives determined
by test cases and dead logic.

Test Generation Advisor Requirements

For analysis, your model must compile. Also, if you change the model name, you must
reload the model and reopen the Test Generation Advisor.

Identify Analyzable Components

To analyze your model using the Test Generation Advisor, follow this high-level workflow:

Open your model.
From the menu bar, click Analysis > Design Verifier > Generate Tests > Advisor.

Your model compiles, and the Test Generation Advisor opens. It displays the model
hierarchy and summary table.

4 Enter a time value for Seconds per component, which limits the analysis time per
component. This value does not include time for other operations such as
compilation.

Run the analysis by clicking the Start Analysis button [, Track the analysis using the
progress indicator.

6 Determine incompatibilities, complexities and characteristics from the component
hierarchy tree and the results summary.

7 Trace from the summary to the model using the component hyperlinks.

Analyze and Generate Tests for Model Components

This example demonstrates analysis and test generation using the Test Generation
Advisor. The example model has analyzable and incompatible subsystems.

At the command line, enter fuelsys to open the fuelsys model.

Save a copy of the model in a writable location on the MATLAB path.

Click Analysis > Design Verifier > Generate Tests > Advisor to open the Test
Generation Advisor.



Use Test Generation Advisor to Identify Analyzable Components

9 | @ | B> | secontspercomporenc]s || @
Component Hierarchy "E 'T  Component Name: fuelsys
~ 2] fuelsys

=] control logic

=] MAP Estimate Overall progress

5] Speed Estimate
(=] Throttle Estimate
E] Low Mode

5] RicH Mode @ Incompatible: 0 @ Analyzable: 0 Ay Complex: 0

Components processed  0/7

Summary of subcomponents in fuelsys'
R e P i i
(Condition Declsion) | Detected Declded (%)
167 NA NA
109 NA

controller/control logic

rmuu!lh:\ Sensor correction and Fault =] 2 NA NA
[=] 2 NA NA
=] 2 NA NA
[=] 2 NA NA
a 2 NA NA

In the Seconds per component text box, enter 25.

Click the Start Analysis button 1> to begin the model analysis.

After the analysis is complete, the component tree displays results for the overall
model and each component.

7-25



7 Generating Test Cases

9 [ @B s per oo @

Component Hierarchy  "E 'E Component Name: fuelsys
~ ) fuelsys
@ control logic
prog I
@ MAP Estimate (Cla s

@ Sspeed Estimate

@ Throttic Estimate
@ Low Mode

€ RICH Made ) Incompatible: 2 @ Analyzabie: 5

Components processed  7/7

Ay complex: 0
Summary of subcomponents in fuelsys'

I e il el I
Declslon) Detected
167 1
109 1

Deelded (%)
Q A
te controller/control logic (] 87.2%
ontroller'Sensor correction and Fault @ 0 100%
Redundancy/MA
fuelsys/fue er/Sensor correction and Fault ] 2 0 100%
Redundancy/Speed Estimate
i er/Sensor correction and Fault [] 2 0 100%
imate
uel Calculation/Switchable @ 2 0 100%
te controller/Fuel Caleulation/Switchable Q 2 NA NA

Compensation/RICH Mode

Model items that are incompatible:
Messag
Simulink Design Verifier failed to initialize: 'fuelsys/fuel rate
controller/Fuel Calculation/Switchable

p ICH Mode' is ible for design error detection with
Simulink Design Verifier.
The parameter D' used by 'RICHMode/RICH Mode/Discrete Transfer Fen (with
initial outputs)/Discrete State Space’ has a non finite value. Simulink Design
Verifier does not support non finite values.

fuelsys

fuelsys/fuel rate controller/Fuel Calculation/Switchable
C ion/RICH Mode: e Transfer Fen (with
initial outputs)/Discrete State Space

v

Highlight the control logic subsystem in the component hierarchy. The analysis
was partial, in that it determined 87% of the objectives for control logic by test

cases and dead logic. To load the test generation summary, click the Show test
generation results summary link.

At the bottom of the summary, the table lists recommended test generation
parameters.

7-26



Use Test Generation Advisor to Identify Analyzable Components

9 @ I> Seconds per cornpunent: C’)
Component Hierarchy "E "E Component Name: control logic
hd o fuelsys
o control logic
) |
@ P Estimate S EETE

o Speed Estimate

Components processed 77
0 Throttle Estimate

@ Low Mode
@ RICH Mode €3 Incompatible: 2 @ Analyzable: 5 Ay Complex: 0
Summary ofmbcumpomr.: in ‘control logic' ~
[ ComponentName [ Status | clb ectives (Condition Declsion) Deld ngic Detected | Objectives Declded (%)
fuelsys Im] rate controller LLlI'l[lL\l logic @ 87.2%

Preliminary Test Generation Results

Preliminary analysis result for control logic: 95 out of 109 objectives decided.
Show test generation results summary (Partial)

Preliminary Dead Logic D

'I" objectives are dead logie in 'control logic'

Simulink Design Verifier proved that these decision and condition outcomes cannot occur and are dead-logic in the model.

Type Model Item ptio
Decision fuelsys/fuel rate controller/control Transition: Transition trigger expression
logic/Fueling Mode/Fuel Disabled/transition(#85) F
Recommendations
Maximum analysis time(seconds) 300
Automatic stubbing of unsupported atomic blocks on
Testsuite generation strategy CombinedObjectives (Nonlinear Extended)

w

Extract this component and generate tests

Help

8 Click the Component name hyperlink. Simulink traces to the control logic
Stateflow chart.

9 Generate the full set of tests for the subsystem. In the Test Generation Advisor
summary for control logic, click Extract this component and generate tests.

Manually Select Components for Testing

If you know which model components that you want to test, you can manually select these
components. Break down the model into components of 100-1000 objectives each. Use
the sldvextract function to extract components into a new model. You can then analyze
the individual components, starting with the lowest-level subsystems.

7-27



7 Generating Test Cases

See Also

More About

. “Model Coverage Objectives for Test Generation” on page 7-32
. “Generate Test Cases for Model Decision Coverage” on page 7-5

7-28



Generate Test Cases for Embedded Coder Generated Code

Generate Test Cases for Embedded Coder Generated
Code

In this section...

“Generate Test Cases for Generated Code from the Block Diagram” on page 7-29

“Generate Test Cases for Generated Code by Using the Simulink Design Verifier API” on
page 7-30

“Generate Test Cases for Generated Code from the Simulink Test Test Manager” on page
7-30

When you use Embedded Coder to generate code from a model set to software-in-the-loop
(SIL) mode, you can use Simulink Coverage to record coverage metrics on the generated
code. However, the same tests that enable you to achieve 100% model coverage might not
produce 100% coverage for the generated code. Some differences between the output
code and the model can cause gaps in the code coverage compared to the model
coverage:

* Extra custom code files

* Shared utility files
¢ Code transformations, such as:

* Expression folding
* Simplified or expanded expressions
* New decision points due to lookup tables

You can use Simulink Design Verifier to generate test cases to increase coverage for
generate code. You generate test cases for generated code from the block diagram, by
using the Simulink Design Verifier API, or from the Simulink Test Test Manager. Before
you generate test cases, you need to record coverage results at least once.

Generate Test Cases for Generated Code from the Block
Diagram
After you Enable SIL Code Coverage for a Model (Simulink Coverage), simulate the

model, and record code coverage data, you use Simulink Design Verifier to generate
additional test cases for the generated code:

7-29



7 Generating Test Cases

7-30

1 Ifyou have not previously recorded coverage results, enable coverage and simulate
the model.

2 Ifyou have already recorded coverage results, indicate the existing coverage data. In
the Configuration Parameters dialog box, on the “Design Verifier Pane: Test
Generation” on page 15-34 pane, select Ignore objectives satisfied in existing
coverage data and select the existing coverage data file.

3  From the block diagram:

* Select Analysis > Design Verifier > Generate Tests > Code Generated as Top
Model to generate tests for code generated as top model.

* Select Analysis > Design Verifier > Generate Tests > Code Generated as
Model Reference to generate tests for code generated as model reference.

Simulink Design Verifier test generation proceeds according to the test generation
mode that you choose.

To learn more about the differences between code generated as top model and code
generated as model reference, see:

* “Configure and Run SIL Simulation” (Embedded Coder)

* “Code Interfaces for SIL and PII” (Embedded Coder)

* “Choose a SIL or PIL Approach” (Embedded Coder)

Generate Test Cases for Generated Code by Using the
Simulink Design Verifier API

For an example of how to programmatically generate test cases for generated code, see
“Code Coverage Test Generation”.

Generate Test Cases for Generated Code from the Simulink
Test Test Manager

If you use the Simulink Test Test Manager to record code coverage for a model set to SIL
mode, you can incrementally increase coverage for the generated code directly from the
Test Manager. For more information, see “Incrementally Increase Test Coverage Using
Test Case Generation” on page 17-9.



See Also

See Also

More About

. “Support Limitations and Considerations for S-Functions and C/C++ Code” on page
3-37

7-31



7 Generating Test Cases

Model Coverage Objectives for Test Generation

7-32

In this section...

“Decision” on page 7-32
“Condition” on page 7-32

“MCDC” on page 7-33

“Relational Boundary” on page 7-33

Decision

Decision coverage in Simulink Design Verifier examines blocks and Stateflow states that

represent decision points in a model. For instance, the Switch block involves the decision
about whether the control input is greater than a threshold value. For more information,

see “Model Objects That Receive Coverage” (Simulink Coverage).

To enable decision coverage, under Design Verifier > Test Generation, for Model
coverage objectives, select one of the following:

* Decision

*+ Condition Decision

* MCDC

For each decision in your model, Simulink Design Verifier generates test cases that satisfy

the coverage objective. For more information, see “Decision Coverage (DC)” (Simulink
Coverage).

Condition

Condition coverage examines blocks that output the logical combination of their inputs
and Stateflow transitions. For more information, see “Model Objects That Receive
Coverage” (Simulink Coverage).

To enable condition coverage, under Design Verifier > Test Generation, for Model
coverage objectives, select one of the following:

* Condition Decision
« MCDC



Model Coverage Objectives for Test Generation

For each input to a logical block and each condition in a transition, Simulink Design
Verifier generates test cases that satisfy the coverage objective. For more information,
see “Condition Coverage (CC)” (Simulink Coverage). .

MCDC

Modifier condition/decision coverage examines blocks that output the logical combination
of their inputs and Stateflow transitions. For more information, see “Model Objects That
Receive Coverage” (Simulink Coverage).

To enable condition MCDC coverage, under Design Verifier > Test Generation, for
Model coverage objectives, select MCDC.

For each input to a logical block and each condition in a transition, Simulink Design
Verifier generates test cases that satisfy the coverage objective. For more information,
see “MCDC Coverage for Stateflow Charts” (Simulink Coverage).

For information on how MCDC test generation in Simulink Design Verifier can deviate
from MCDC coverage recorded by Simulink Coverage, see “Modified Condition and
Decision Coverage in Simulink Design Verifier” on page 9-18.

Relational Boundary

Relational boundary coverage examines blocks that have an explicit or implicit relational
operation and Stateflow transitions. For more information, see “Model Objects That
Receive Coverage” (Simulink Coverage). Test generation for relational boundary coverage
is not supported for If and Fcn blocks.

To enable relational boundary coverage, under Design Verifier > Test Generation,
select Include relational boundary objectives.

For each relational operation in the model, Simulink Design Verifier generates test cases
that satisfy the coverage objective. For more information, see “Relational Boundary
Coverage” (Simulink Coverage).

7-33






Extending Existing Test Cases

* “When to Extend Existing Test Cases” on page 8-2

+ “Extend Test Cases for Model with Temporal Logic” on page 8-4
* “Extend Test Cases for Closed-Loop System” on page 8-12

+ “Extend Test Cases for Modified Model” on page 8-19



8 Extending Existing Test Cases

When to Extend Existing Test Cases

8-2

The Simulink Design Verifier software can analyze your model using previously generated
test cases that you specify. You can use this feature in the following situations:

* You encounter delays trying to analyze your model, or you see incomplete results. This
can happen if your model has any of the following characteristics:

* Temporal logic
* Large counters
* Model objects that are difficult to test due to complex or nonlinear logic

Analyzing the model and considering the existing test cases allows you to focus the
analysis on those parts of the model that are difficult to analyze. You can combine the
generated test cases to create a complete test suite for the full model.

For an example of extending existing test cases for a model that uses temporal logic,
see “Extend Test Cases for Model with Temporal Logic” on page 8-4.

* You have a closed-loop simulation model that uses a Model block to include the
controller. First, log the data from the Model block and then analyze the model
referenced by the Model block. Using this technique, the test cases for the controller
can realistically reflect the continuous time behavior expected in the closed-loop
system.

For an example of extending existing test cases for a closed-loop system, see “Extend
Test Cases for Closed-Loop System” on page 8-12.

* You change an existing model for which you have already generated test cases . In this
situation, you can reanalyze the model, omitting the analysis results from the original
version of the model. The combined test cases give you a complete test suite for the
new model.

For an example of extending existing test cases for modified models, see “Extend Test
Cases for Modified Model” on page 8-19.

Note When you configure Simulink Design Verifier to treat parameters as variables in its
analysis, you cannot also use the analysis to extend existing test cases. In Analysis >
Design Verifier > Options, if you specify your model to extend existing test cases with a
Data file and apply parameter configurations with a Parameter configuration file,
when you attempt to perform Simulink Design Verifier analysis, the software reports that



See Also

your model is incompatible. This occurs because the existing test cases do not include
corresponding parameter values.

Common Workflow for Extending Existing Test Cases

Use the following workflow for extending existing test cases during a test-generation
analysis:

* Create the starting test cases.

* Log the starting test cases.

* Extend the existing test cases during test-generation analysis.

» Verify that you have created a complete test suite.

The examples in this category use some or all of these tasks when extending existing test
cases during analysis.

See Also

More About

. “Extend Test Cases for Model with Temporal Logic” on page 8-4
. “Extend Test Cases for Closed-Loop System” on page 8-12
. “Extend Test Cases for Modified Model” on page 8-19

8-3



8 Extending Existing Test Cases

Extend Test Cases for Model with Temporal Logic

8-4

In this section...

“Create Starting Test Case” on page 8-4
“Log Starting Test Case” on page 8-7
“Extend Existing Test Cases” on page 8-8
“Verify Analysis Results” on page 8-10

Create Starting Test Case

This example uses the sldvdemo sbr extend design model. This model includes a
Stateflow chart SBR that uses temporal logic. The transition from the KEY OFF state to
the KEY_ON state occurs after the Stateflow chart has been simulated 500 times. To test
this transition requires a test case with 500 time steps.

In this example, you create a test case that forces the transition to KEY ON by setting the
KEY input to 1 for the duration of the test case. You simulate the model using this test
case, satisfying the objectives for the KEY OFF/KEY ON transition. Then you analyze the
model, ignoring the objectives already satisfied by the test case you create.

1

Open the example model:

sldvdemo sbr extend design
Open the SBR Stateflow chart to see the KEY_OFF/KEY_ON transition.

KEY_OFF
SeatBeltican=0;

[afterfa00 tick)] | T __
] KEY==1]

¥ i

rREv_ON

Create a model reference harness model:

[~, harnessModelFilePath] = ...
sldvmakeharness('sldvdemo sbr extend design',[],[],true);

The harness model, sldvdemo sbr extend design harness, includes:



matlab:sldvdemo_sbr_extend_design

Extend Test Cases for Model with Temporal Logic

* A Model block named Test Unit that references the original model,
sldvdemo sbr extend design.

sldwdermo_sbr_extend_design

W Inputs SeatBeltlcon -

Test Lnit

* A Signal Builder block named Inputs that contains the test-case inputs to the
model referenced in the Model block.

Test Z 1
mak -ase Inputs,Spead —

"""+ Inputs.SeatBeltFasten

Inputs KEY —

Inpis

Initially, the Signal Builder block contains only the default test case, with all three
inputs set to 0.

* A DocBlock block named Test Case Explanation that documents the test case.

=
[le e

Tauxt
Test Case Explanation

Initially, the Test Case Explanation block does not have any content for the default
test case.

4 sldvmakeharness returns the path to the harness model file in
harnessModelFilePath. Extract the name of the harness model file into
harnessModel, for later use:

[~, harnessModel] = fileparts(harnessModelFilePath);

In order to analyze the KEY OFF to KEY ON state transition, create a test case that makes
the transition to the KEY_ ON state in 500 time steps:



8 Extending Existing Test Cases

8-6

Open the Signal Builder dialog box for the harness model.
Select Axes > Change Time Range.

The Signal Builder's time range determines the span of time over which its output is
explicitly defined. In the Set the total time range dialog box, set the Max time field
to 5 seconds, creating 500 time steps of 0.01 seconds duration each.

4 Set the KEY input to 1 for the duration of this starting test case, forcing the transition
to the KEY ON state. Selecting the Inputs.KEY signal requires two clicks. First,
click the signal so that dots appear at both ends of the signal.

_:I I_ ] ] ] ] ] ] | ] ] |

Inputs. KEY ' ' '
0 +
1 i i i i i i | i i i
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (sec)
5 Click the Inputs.KEY signal again. The Signal Builder thickens the signal to indicate
that it is selected.

) S L L | L L [ S L L |

Inputs. KEY

1 i i i i i i | i i i
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (sec)

6 At the bottom of the Signal Builder dialog box, under Left Point, enter 1 for Y.
7  Press Enter to apply the change.

The Inputs.KEY signal is set to 1 for the duration of the test case.



Extend Test Cases for Model with Temporal Logic

§

1 1 1 1 1 1 1 L 1 1
"""""""" o Bt e e e el Bl el il |

Inputs KEY

i |
3.5 4 45 5

N,
Bl f—------
b f—------

0.5 1.5 2.5

Time (sec)

Close the Signal Builder dialog box.

Log Starting Test Case

The next step is to log the starting test case that you created. You can then specify that
Simulink Design Verifier ignore the objectives satisfied by that test case when performing
an analysis.

The sldvlogsignals function records the test case data in a MAT-file that contains an
sldvData structure. This structure stores all the data that the software gathers and
produces during the analysis.

To log the starting test cases:

1

Save the name of the Model block in the harness model that references the
sldvdemo sbr extend design model:

[~, modelBlock] = find mdlrefs(harnessModel, false);

Simulate the model referenced by the Model block using the new test case, and log
the input signals in the workspace variable loggeddata:

loggeddata = sldvlogsignals(modelBlock{1});
Save the logged data in a MAT-file named existingtestcase.mat:

save('existingtestcase.mat', 'loggeddata');

You will specify this file when you analyze the sldvdemo sbr extend design
model.



8 Extending Existing Test Cases

8-8

Extend Existing Test Cases

You can now analyze the sldvdemo sbr extend design model and specify that the
analysis extend the test cases already satisfied. The analysis uses the existing test-case
data as a starting point, and does not try to generate test cases for the KEY OFF to
KEY ON transition in the SBR Stateflow chart.

Specify the starting test case and analyze the model:
1 In the model window for sldvdemo sbr extend design, select Analysis >
Design Verifier > Options.

2 In the Configuration Parameters dialog box, in the Select tree, under Design
Verifier, select Test Generation.

3 On the Test Generation pane, under Existing test cases, select Extend existing
test cases.

4 In the Data file field, enter the name of the MAT-file that contains the logged data:

existingtestcase.mat

5 Clear Ignore objectives satisfied by existing test cases.
When you clear this option, the software includes the starting test case in the final
test suite. You will see that the complete test suite achieves 100% model coverage.
To close the Configuration Parameters dialog box, click OK.

Save the sldvdemo_sbr extend design model on the MATLAB path with the
name sldvdemo sbr extend design test.

8 In the Model Editor, select Analysis > Design Verifier > Generate Tests > Model.

The log window first lists the objectives that the starting test case satisfied.



Extend Test Cases for Model with Temporal Logic

Simulink Design Verifier Results Summary: sldvdemo_sbr_exdend_design_test 3

Progress l
Objectives processed  2/37
Satisfied 2
Unsatisfiable 0
Elapsed time 0:32

19-Jul-2017 13:29:02

Checking compatibility for test generation: model
'sldvdemo_sbr_extend_design_test’

Compiling model...done

Checking compatibility...done

19-Jul-2017 13:29:25
'sldvdemo_sbr_extend_design_test' is compatible for test generation

with Simulink Design Verifier.

Loading initial test data...

Generating tests using compatibility results from 19-Jul-2017
13:29:25...

SATISFIED

SBR

Chart: Substate executed State "KEY_OFF"
Analysis Time = 00:00:29

SATISFIED

Disable Highlighting Stop

The log window then lists the objectives generated beyond the starting test case.

8-9



8 Extending Existing Test Cases

Verify Analysis Results

To make sure that this analysis creates a complete test suite, generate the harness model
so you can simulate the model with the generated test cases:

In the log window, click Create harness model.

2 In the harness model sldvdemo sbr extend design test harness, open the
Signal Builder block named Inputs.

3 To simulate the model using all the test cases, click the Run all and produce

all

coverage button =

When the simulation is complete, the model coverage report is displayed.

4 View the coverage information for the sldvdemo sbr extend design test
model to see that the complete test suite achieves 100% coverage.

Summary
Madel Hierarchy/Complexity: Test 1
1
1. sldvdemo sbr extend design test 24 100% D
2. ...5BR 20 100% I
b SF: SBR 19 100%
Ao SF: KEY ON 12 100% E——
= T SF. SB UWFASTEN 5 100% S
8 .. SF HIGH SFEED 4 100% S
See Also
More About

. “When to Extend Existing Test Cases” on page 8-2
. “Extend Test Cases for Closed-Loop System” on page 8-12

8-10



See Also

“Extend Test Cases for Modified Model” on page 8-19

8-11



8 Extending Existing Test Cases

Extend Test Cases for Closed-Loop System

8-12

In this section...

“Log Starting Test Case” on page 8-12

“Extend Existing Test Cases” on page 8-15

Suppose that you have a model with a closed-loop controller in a model referenced by a
Model block. You do not record 100% coverage for the referenced model. Extending
existing test cases can help you achieve 100% coverage. The Simulink Design Verifier
software adds time steps to the existing test cases when analyzing the controller
implemented by the referenced model. The test cases that result from the analysis
realistically reflect the continuous time behavior expected in the closed-loop controller.

A closed-loop controller passes instructions to the controlled system and receives
information from the environment as the control instructions execute. The controller can
adapt and change its instructions as it receives this information.

Log Starting Test Case

This example uses the sldemo mdlref basic model. The CounterA Model block
references the model sldemo mdlref counter. When you simulate the parent model,
sldemo mdlref basic, and collect coverage, you record only 75% coverage for
sldemo _mdlref counter. Log the data from the simulation and extend those test cases
to achieve 100% coverage for the referenced model.

1 Open the example model:

sldemo _mdlref basic
In the Simulink Editor, select Analysis > Coverage > Settings.

3 In the Coverage pane of the Configuration Parameters, select Enable coverage
analysis.

4 Select Referenced Models

Note that the analysis records coverage only for referenced models with Simulation
mode set to Normal, SIL, or PIL. In sldemo _mdlref basic, the CounterC Model
block has Simulation mode set to Accelerator, so you cannot record coverage for
it.



matlab:sldemo_mdlref_basic

Extend Test Cases for Closed-Loop System

Under Coverage metrics, set the structural coverage level to Modified Condition
Decision Coverage (MCDC) to record decision, condition, and modified condition/
decision coverage.

Click OK.
Simulate the model.

When the simulation completes, the generated coverage report opens in a browser
window. The report shows the following coverage results for the referenced model:
* Condition: 50% (2/4) condition outcomes

» Decision: 25% (1/4) decision outcomes

« MCDC: 0% (0/2) conditions reversed the outcome

The coverage results are also highlighted in the referenced model,
sldemo mdlref counter. You can select individual model objects to view specific
coverage results in the Coverage dialog box, as shown in the following screenshot.

8-13



8 Extending Existing Test Cases

ﬁ sldemo_mdlref_counter - Simulink prerelease use — O >
File Edit View Display Diagram Simulation Analysis Code Tools Help
i ol 7 bid
B-=-8 L - =g eIk » (D v @ T
sldemo_mdlref _counter
® sldemn:-_rndlref_caunter -
o -
IE' upper Scopad
=%
O GEl
lomesr oufiput
lowwer output
upper]
o :\ >
- ingut "
|:| imput ij
T fimit
upper] T
1= »
ower] !
fowei >—>1+F
prewious_output 1
I
Previous Output
[ "i Coverage: sldemo_mdlref_basic — O .
IE—EI = = ~ B
> Switch block "Switch”
EEL Switch trigger was never false (out = in3).
Full Execution coverage.

8-14



Extend Test Cases for Closed-Loop System

8 To log the input signals for the CounterA Model block in sldemo _mdlref basic
during simulation, at the MATLAB command prompt, enter the following code:
logged data = sldvlogsignals('sldemo mdlref basic/CounterA');

9 Save the logged data in a MAT-file named existingtestcase.mat:

save('existingtestcase.mat', 'logged data');

When you analyze the model referenced in CounterA (sldemo mdlref counter) to
extend existing test cases, you specify this MAT-file.

Extend Existing Test Cases

Analyze the sldemo _mdfref counter model, specifying that the analysis extend the
test cases already satisfied:

1 To openthe sldemo mdfref counter model, in the sldemo mdlref basic
model, double-click the CounterA Model block.
In the Simulink Editor, select Analysis > Design Verifier > Options.

3 In the Configuration Parameters dialog box, on the Select pane, under Design
Verifier, select Test Generation.

4 On the Test Generation pane, in the Model coverage objectives box, select MCDC.
Under Existing test cases, select Extend existing test cases.

6 In the Data file field, specify the name of the MAT-file that contains the logged data,
in this case, existingtestcase.mat.

7 Clear Ignore objectives satisfied by existing test cases.

When you clear this option, the software includes the test cases recorded in the file
existingtestcase.mat in the final test suite.

Click OK.

In the Simulink Editor, select Analysis > Design Verifier > Generate Tests >
Model.

The analysis first loads the objectives satisfied by the logged test cases. Then it adds
extra time steps to those test cases and tries to satisfy any missing objectives. When
the analysis completes, the Simulink Design Verifier log window opens and indicates
that all 12 objectives are satisfied.

8-15



8 Extending Existing Test Cases

10 To view the analysis results on the model, in the Simulink Design Verifier log window,
select Highlight analysis results on model.

The Simulink Design Verifier results are highlighted in the referenced model,
sldemo_mdlref counter. You can select individual model objects to view specific
analysis results in the Simulink Design Verifier Results dialog box, as shown in the
following screenshot.

8-16



Extend Test Cases for Closed-Loop System

PL sldemo_mdiref_counter * - Simulink prerelease use — O *

File Edit View Display Diagram Simulation Analysis Code Tools Help
@vﬁv ﬁgg@v ”[@%@Hb }}Ovv

sldemo_mdlref _counter

® sldemn:-_rndlref_caunter -
&
or —
(e
=:
(<] 1
lowwer output
upper]
.
@ (‘ ) ingut )
- Mo
|:| imput L
™ o limit
upper] T
ower] - I
foweT >—>1—
previous_output 1
Previous Output
[ o1 1l ol A Alref - : _
'bi Results: sldemo_mdlref_counter O >
|-H = v K&
= Back to summary
sldemo_madlref _counterSwitch
Ready logical trigger input false (output is  SATISFIED - View test case
from 3rd input port)
logical trigger input true (output is  SATISFIED - View test case
from 1st input port)

8-17




8 Extending Existing Test Cases

11 To verify the results of the analysis and review the generated test cases, in the
Simulink Design Verifier log window, select Generate detailed analysis report.

12 To collect model coverage using the extended test suite, in the Simulink Design
Verifier log window, select Simulate tests and produce a model coverage report.

When the simulation completes, the generated coverage report opens in a browser
window. The report now shows the following coverage results for the referenced
model sldemo mdlref counter:

* Condition: 100% (4/4) condition outcomes
* Decision: 100% (4/4) decision outcomes
« MCDC: 100% (2/2) conditions reversed the outcome

See Also

More About

. “When to Extend Existing Test Cases” on page 8-2
. “Extend Test Cases for Model with Temporal Logic” on page 8-4
. “Extend Test Cases for Modified Model” on page 8-19

8-18



Extend Test Cases for Modified Model

Extend Test Cases for Modified Model

In this section...

“Create Starting Test Cases” on page 8-19
“Extend Existing Test Cases” on page 8-20

Suppose that you have a model that you have already analyzed using Simulink Design
Verifier, and you modify the model. The original test suite may not record 100% coverage
for the modified model. Reanalyze the modified model to make sure that it satisfies all the
new test objectives. Instead of reanalyzing the entire model, you focus the new analysis
on just the modified part of the model. In this way, you leverage the test cases created for
the original model, extending them to satisfy any new objectives.

This example uses the sldvdemo cruise control model. You analyze the model and
generate test cases. Then you analyze a modified version of that model,

sldvdemo cruise control mod, extending the test cases from the original analysis.
The analysis returns a complete test suite for the new model.

Create Starting Test Cases

Analyze the sldvdemo cruise control model and generate test cases that achieve
100% coverage.

1 Open the example model:

sldvdemo cruise control

2 To start a Simulink Design Verifier analysis for the sldvdemo_cruise control
model, double-click the Run Simulink Design Verifier block:

Run
{double-click)

Run Simulink Design Verifier

The analysis satisfies 34 test objectives for the sldvdemo cruise control model.
The software stores the resulting data file in a subfolder of the MATLAB Current
Folder:

8-19


matlab:sldvdemo_cruise_control

8 Extending Existing Test Cases

8-20

sldv_output\sldvdemo cruise control\sldvdemo cruise control sldvdata.mat
In the next section, when you analyze the modified model, this data file specifies the
starting test cases that you extend.

Close the sldvdemo cruise control model and all the files created by the
analysis. If asked, do not save any changes you made to the model.

Extend Existing Test Cases

The sldvdemo cruise control mod model is a modified version of
sldvdemo_cruise control. The Controller subsystem contains a Saturation block that
specifies that the target speed cannot exceed 70.

Open the modified model and analyze it, extending the test cases that you generated
when analyzing the sldvdemo cruise control model:

1

Open the example model, the modified version of sldvdemo cruise control:

sldvdemo _cruise control mod

Double-click the Controller subsystem to see the change to the original model, a
Saturation block that specifies the maximum speed:

>
o\

*— Saturation

Close the Controller subsystem.
Select Analysis > Design Verifier > Options.

In the Configuration Parameters dialog box, on the Select pane, under Design
Verifier , select Test Generation.

On the Test Generation pane, under Existing test cases, select Extend existing
test cases.

In the Data file field, click Browse and navigate to the MAT-file created in the
MATLAB Current Folder when analyzing the original model:

sldv_output\sldvdemo cruise control\sldvdemo cruise control sldvdata.mat


matlab:sldvdemo_cruise_control

Extend Test Cases for Modified Model

10
11

12

Clear Ignore objectives satisfied by existing test cases.

When you clear this option, the analysis includes the test cases recorded in the file
sldvdemo cruise control sldvdata.mat in the final test suite.

Click Apply to save these settings.

To open the main Design Verifier pane, in the Select tree, click Design Verifier.
To start the analysis, click Generate Tests.

The analysis first loads the 34 objectives satisfied by the initial test cases. Then it
adds extra time steps to those test cases and tries to satisfy any missing objectives.

In the log window, click Generate detailed analysis report.
The analysis satisfied a total of 38 satisfied objectives for the

sldvdemo _cruise control mod model. The analysis satisfied four additional
objectives that correspond to the Saturation block.

Objectives Satisfied

simulink Design Verifier found test cases that exercise these test objectives.

Test

# [Type Model ltem Description Case

logical trigger input
1 Decision |Controller/Switchi false (output is from 3
3rd input port)

logical trigger input

2 |Decision  |ControllerSwitchi true (output is from 1st [1
input port)

3 |Decision |ControllerSaturation input = lower limit F il

4 |Decision  |Controller/Saturation input = lower limit T 3

5 |Decision  |Controller/Saturation input == upper limit F |1

£ |Decision |[Controller’Saturation input == upper limit T 10

8-21



8 Extending Existing Test Cases

See Also

More About

. “When to Extend Existing Test Cases” on page 8-2
. “Extend Test Cases for Model with Temporal Logic” on page 8-4
. “Extend Test Cases for Closed-Loop System” on page 8-12

8-22



Achieving Test Cases for Missing
Model Coverage

* “Generate Test Cases for Missing Coverage Data” on page 9-2

* “Achieve Missing Coverage in Referenced Model” on page 9-3

» “Missing Coverage in Subsystems and Model Blocks” on page 9-13

* “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-14

* “Modified Condition and Decision Coverage in Simulink Design Verifier” on page 9-18



9 Achieving Test Cases for Missing Model Coverage

Generate Test Cases for Missing Coverage Data

9-2

If you simulate your model and record coverage data, but your model does not achieve
100% coverage, Simulink Design Verifier can find test cases that achieve the missing
coverage. The software targets the test-generation analysis for the part of the model that
is missing coverage, ignoring the model coverage data that was recorded during
simulation.

The following examples describe how to focus the test-generation analysis on a part of the
model that did not achieve 100% coverage:

* “Achieve Missing Coverage in Referenced Model” on page 9-3
* “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-14

See Also



Achieve Missing Coverage in Referenced Model

Achieve Missing Coverage in Referenced Model

If you simulate a referenced model that does not achieve full coverage, you can use
Simulink Design Verifier to generate test cases that achieve full coverage. There are two
approaches:

* Programmatically achieve missing coverage: Generate test cases for a referenced
model with APIs for test-generation analysis.

» Incrementally increase coverage: Generate test cases for the test harness model with
missing coverage analysis features.

Programmatically Achieve Missing Coverage in Referenced
Model

* “Record Coverage Data for Example Model” on page 9-3
* “Find Test Cases for the Missing Coverage” on page 9-5
* “Achieve Missing Coverage” on page 9-5

* “Verify Complete Model Coverage” on page 9-6

This example model uses a referenced model that does not achieve full coverage. When
you run a test-generation analysis on the referenced model and combine it with previously
recorded coverage data, you can achieve 100% coverage for the referenced model.

Record Coverage Data for Example Model
Simulate the example model. Record condition, decision, and MCDC coverage.
1 Open the example model:

sldemo_mdlref basic

The Model blocks CounterA, CounterB, and CounterC reference the model

sldemo mdlref counter.

In the Simulink Editor, select Analysis > Coverage > Settings.

On the Coverage pane of the Configuration Parameters dialog box, set the following
options:

* Select Enable coverage analysis.

9-3



9 Achieving Test Cases for Missing Model Coverage

9-4

* Select Referenced Models.

* Click Select Models. In the Select Models for Coverage Analysis dialog box,
select the check box for the referenced model sldemo _mdlref counter. Click
OK.

The check box for sldemo mdlref counter becomes visible, corresponding to
CounterA and CounterB. Coverage is not enabled for CounterC because the
reference model CounterC is in Accelerator simulation mode.

» Specify which types of coverage to record during simulation. Under Coverage
metrics, select MCDC.

In the Coverage > Results pane of the Configuration Parameters. Set the following

options:

» Select Save last run in workspace variable to save the collected coverage data
from the most recent simulation run in a variable in the MATLAB workspace.

* Select Generate report automatically after analysis to specify that the
simulation create a coverage report.

* In the cvdata object name field, enter covdata original to specify a unique
name for the coverage data workspace variable.

Click OK.

To record the coverage data, start the simulation of the sldemo mdlref basic
model.

After the simulation, the coverage report opens. The report indicates that the
following coverage is achieved for the referenced model sldemo mdlref counter:

¢ Decision: 25%
* Condition: 50%
« MCDC: 0%

The simulation saves the coverage data in the MATLAB workspace variable
covdata original, a cvdata object that contains the coverage data.

Save the coverage data in a file on the MATLAB path:

cvsave('existingcov',covdata original);

Keep the model open as you continue through this example.



Achieve Missing Coverage in Referenced Model

Find Test Cases for the Missing Coverage

To achieve 100% coverage for the sldemo mdlref counter model, run a test-
generation analysis that uses the existing coverage data.

1 Open the referenced model. At the command line, enter:

open_system('sldemo _mdlref counter');
2 Create an sldvoptions object:

opts = sldvoptions;
When you create the sldvoptions object, specify:

» That the analysis ignores satisfied coverage data.
* The file name containing the satisfied coverage data (existingcov.cvt)

Enter the following commands to specify these options:

opts.IgnoreCovSatisfied = 'on';
opts.CoverageDataFile = 'existingcov.cvt';
3 Analyze the referenced model, sldemo_mdlref counter, by using the specified
options:
[status, fileNames] = sldvrun('sldemo mdlref counter',opts,true);

The Simulink Design Verifier analysis satisfies seven objectives and creates one test
case for the referenced model.

The next procedure simulates the referenced model, sldemo_mdlref counter, with the
test case that the analysis created.

Achieve Missing Coverage

To achieve the missing coverage for the referenced model, sldemo_mdlref counter,
simulate the model by using the test case from the Simulink Design Verifier analysis.

1 Open the referenced model. At the command line, enter:

open_system('sldemo mdlref counter');

2 Create a cvtest object for the simulation and specify recording decision, condition,
and MCDC coverage.



9 Achieving Test Cases for Missing Model Coverage

cvt = cvtest('sldemo mdlref counter');
cvt.settings.decision = 1;
cvt.settings.condition = 1;
cvt.settings.mcdc = 1;

3 Specify recording coverage and set the name of the cvtest object.

runOpts = sldvruntestopts;
runOpts.coverageEnabled = true;
runOpts.coverageSetting = cvt;

4 Simulate the model with the cvtest object, cvt, and the test case, as defined in
fileNames.DataFile. Save the recorded coverage data in the workspace variable
covdata missing.

[~, covdata _missing] = sldvruntest('sldemo mdlref counter', fileNames.DataFile, runOpts);
Verify Complete Model Coverage

You saved the coverage data from the simulation of the top-level model,
sldemo_mdlref basic, in the workspace variable covdata original. To create a
report that combines the coverage data from the top-level model with the missing
coverage data from the referenced model, sldemo_mdlref counter, enter the
following command:

cvhtml('Coverage Summary', covdata original, covdata missing);

The report shows that by analyzing the referenced model and using those results to
record coverage, you can achieve 100% decision, condition, and MCDC coverage.

Summary
Model Hierarchy/Complexity: Testl Test 2 Total

D1 C1 MCDC D1 Cl MCDC D1 Cl MCDC
1. sidemo_mdlref counter 325% m 50% m— 0% T5% e 100% e— (% 100% 100% 100%

9-6

Increase Coverage for Referenced Models in a Test Harness

* “Generate Test Harness Model and Record Coverage Data” on page 9-7
* “Generate Test Cases for the Missing Coverage” on page 9-8

» “Update Simulink Design Verifier Analysis Options” on page 9-11

* “View Active Results for Missing Coverage Analysis” on page 9-11



Achieve Missing Coverage in Referenced Model

“Limitations” on page 9-11

You can incrementally achieve full coverage for a generated test harness model. This
example shows how to first generate a test harness model that does not achieve full
coverage. Next, it shows how to run missing coverage analysis on the test harness model
to generate test cases for 100% coverage.

Note This approach supports only test harness models generated by Simulink Design
Verifier that reference the input model. For more information see, “Reference input model
in generated harness” on page 15-68.

Generate Test Harness Model and Record Coverage Data

To achieve full coverage for the sldemo_mdlref counter model, run a missing
coverage analysis on the Simulink Design Verifier generated harness model.

1

Open the example model:

open_system('sldemo mdlref counter');
Create a harness model for referenced model sldemo _mdlref counter:

[savedHarnessFilePath] = sldvmakeharness('sldemo mdlref counter');

For more information about the harness model, see “Simulink Design Verifier
Harness Models” on page 13-17.

In the harness model sldemo_mdlref counter harness, the Format parameter
must be Dataset to make the referenced model sldemo mdlref counter and the
harness model sldemo mdlref counter harness have the same parameter
settings. For more information see, “Model Configuration Parameters: Data Import/
Export” (Simulink).

Simulate the sldemo_mdlref counter harness model to record the coverage
achieved by the test cases in the harness model. After the simulation, the coverage
report appears. The report indicates that the following coverage is achieved for
sldemo mdlref counter:



9 Achieving Test Cases for Missing Model Coverage

Summary
Model Hierarchy/Complexity Testl
Decision Condition MCDC Execution Relational Boundary
1. sldemo_mdlref counter 3 23% mm 30% — 0% 6% e 30% —

Generate Test Cases for the Missing Coverage
1 Open the harness model:
open_system('sldemo mdlref counter harness');

To generate test cases for the missing coverage, in the Simulink Editor, select
Analysis > Design Verifier > Generate Tests > Missing Coverage. A notification
indicates the number of new tests that are added.

9-8



Achieve Missing Coverage in Referenced Model

'Pi sldemo_mdlref_counter_harnessl - Simulink

File

Edit View Display Diagram

Simulation

Analysis

Code

Tools  Help

[=][E =)

i = " y Pid
E-=-H e M= MER N ORI » (9 v| @~
| sldemo_mdiref_counter_harness1
(] sldernu:u_rndlref_cu:uunter_harnessl » b
@ (1) Added 1 new tests for missing coverage. E]
Size-Typa
IE' Test Case 1 upper ’TJPPEFIdemu_mu:Iral'_cuuntar
= . .
L input input output 4@
_I—- lawer lower oulput
Va
Inputs Test Linit
|:| [ ——
Doc
Text
Test Case Explanation
-5
Ready 96% FixedStepDiscrete
2 The Signal Builder dialog box shows the Missing coverage test case 1 added to the

previous Test Case 1.




9 Achieving Test Cases for Missing Model Coverage

9-10

E Signal Builder (sldemo_mdiref_counter_harness/Inputs) EI

File Edit Group Signal Axes Help N

GH )@ oo —~ToEFQEE > e 2

Active Group: | |Tezt Casze 1 =l - E]

Test Caze 1

1r Mizsing coverage test case 1

upper

input

lower

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Hame: | upper ¥ lower

Index: 1 -

Click to select, Shift+click ta add | upper (#1) [ ¥Kin ¥Max ]

3 all

In the Signal Builder dialog box, click Run all ﬂ The software simulates the
harness model by using all the test cases, collects model coverage information, and
displays a coverage report. The coverage report indicates that the missing coverage
analysis records 100% coverage for sldemo mdlref counter.



Achieve Missing Coverage in Referenced Model

Summary

Model Hierarchy/Complexity Test1

Decision Condition MCDC Execution Eelational Boundary

1. zldemo_mdlref counter 3 100% o 1002 o 007 e 007 — 0% —

Update Simulink Design Verifier Analysis Options

1

Open the harness model. At the command line, enter:

open_system('sldemo mdlref counter harness');

In the Simulink Editor, select Analysis > Design Verifier > Options
(sldemo_mdlref counter). The Configuration Parameters dialog box for referenced
model sldemo mdlref counter opens. You can set design verifier options for
missing coverage analysis. For more information see, “Options in Configuration
Parameters Dialog Box” on page 15-2.

View Active Results for Missing Coverage Analysis

1

Open the referenced model. At the command line, enter:

open_system('sldemo mdlref counter');

To view active results for missing coverage test cases, in the Simulink Editor, select
Analysis > Design Verifier > Results > Active. The Results Summary window
opens with the missing coverage analysis results. For more information on active
results, see “Review Analysis Results” on page 13-59. The missing coverage test
cases data is stored in a MAT-file that contains a structure named sldvData. For
more information see, “Contents of sldvData Structure” on page 13-10.

Limitations

1

Missing Coverage analysis is a user interface-based workflow. Command-line
functions are not available for Missing Coverage analysis.

Constraining values for parameters is not supported in the Missing Coverage analysis
workflow. For more information see, “Define Constraint Values for Parameters” on
page 5-5.

9-11



9 Achieving Test Cases for Missing Model Coverage

See Also

More About
. “Generate Test Cases for Missing Coverage Data” on page 9-2
. “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-14

9-12



Missing Coverage in Subsystems and Model Blocks

Missing Coverage in Subsystems and Model Blocks

If your model has a Subsystem block that does not achieve full coverage, you can convert
it to model referenced in a Model block. “Convert a Subsystem to a Referenced Model”
(Simulink) describes how to convert a subsystem to a referenced model. You can then
follow the steps described in “Achieve Missing Coverage in Referenced Model” on page 9-
3.

You cannot convert some subsystems to Model blocks. To test a subsystem to see if you
can convert it to a Model block, use the
Simulink.SubSystem.convertToModelReference function. If that function cannot
convert the subsystem, an error message describes why the conversion failed.

It is possible that you have a Stateflow chart or a MATLAB Function block that does not
achieve full coverage. You cannot convert Stateflow charts and MATLAB Function blocks
to referenced models.

When you cannot use aModel block, follow the steps described in “Achieve Missing
Coverage in Closed-Loop Simulation Model” on page 9-14.

See Also

More About

. “Achieve Missing Coverage in Referenced Model” on page 9-3
. “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-14

9-13



9 Achieving Test Cases for Missing Model Coverage

Achieve Missing Coverage in Closed-Loop Simulation
Model

9-14

In this section...

“Record Coverage Data for the Model” on page 9-14
“Find Test Cases for Missing Coverage” on page 9-15

If you have a subsystem or a Stateflow chart that does not achieve 100% coverage, and
you do not want to convert the subsystem or chart to a Model block, follow this example
to achieve full coverage.

The example uses a closed-loop controller model. A closed-loop controller passes
instructions to the controlled system and receives information from the environment as
the control instructions are executed. The controller can adapt and change its
instructions as it receives this information.

The sldvdemo autotrans model is a closed-loop simulation model. The ShiftLogic
Stateflow chart represents the controller part of this model. Test cases designed in the
ManeuversGUI Signal Builder block drive the closed-loop simulation.

Record Coverage Data for the Model

To simulate the model, recording condition, decision, and MCDC coverage for the
ShiftLogic controller:

1 Open the example model:

sldvdemo_autotrans
In the Simulink Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane in the Configuration Parameters dialog box. set the following
options:
* Select Enable coverage analysis.
* Select Subsystem and click Select Subsystem.
* In the Subsystem Selection dialog box, select ShiftLogic and click OK.

4 Under Coverage metrics, select Modified Condition Decision Coverage
(MCDC).



Achieve Missing Coverage in Closed-Loop Simulation Model

5 Clear the Other metrics if they are selected.
In the Coverage > Results pane of the Configuration Parameters dialog box, set the
following options:
* In the cvdata object name field, enter covdata original controller to
specify a unique name for the coverage data workspace variable.
* Select Generate report automatically after analysis.
Click OK.

Start the simulation of the sldvdemo autotrans model to record the coverage
data.

After the simulation, the coverage report opens. The report indicates that the

following coverage is achieved for the ShiftLogic Stateflow chart:

* Decision: 87% (27/31)

*  Condition: 67% (8/12)

* MCDC: 33% (2/6) conditions reversed the outcome

The simulation saves the coverage data in the MATLAB workspace variable

covdata original controller, a cvtest object that contains the coverage data.
9 Save the coverage data in a file on the MATLAB path:

cvsave('existingcov',covdata original controller);

Find Test Cases for Missing Coverage

To find the missing coverage for the ShiftLogic chart, run a subsystem analysis on that
block. Use this technique to focus your analysis on an individual part of the model.

To achieve 100% coverage for the ShiftLogic controller, run a test-generation analysis
that uses the existing coverage data.
Right-click the ShiftLogic block and select Design Verifier > Options.

2 In the Configuration Parameters dialog box, under the Select tree, choose the
Design Verifier node. Under Analysis options in the Mode field, select Test
generation.

3  Under the Design Verifier node, select Test Generation. Under Existing coverage
data, select Ignore objectives satisfied in existing coverage data.

9-15



9 Achieving Test Cases for Missing Model Coverage

9-16

In the Coverage data file field, enter the name of the file containing the coverage
data that you recorded during simulation:

existingcov.cvt

Click Apply to save these settings.

Under the Select tree, click Design Verifier.

On the main Design Verifier pane, click Generate Tests.

The analysis extracts the Stateflow chart into a new model named ShiftLogic0. The
analysis analyzes the new model, ignoring the coverage objectives previously
satisfied and recorded in the existingcov.cvt file.

When the test-generation analysis is complete, in the Simulink Design Verifier log
window, select Simulate tests and produce a model coverage report.

The report indicates that the following coverage is achieved for the ShiftLogic chart
in simulation with the test cases generated by Simulink Design Verifier:

* Decision: 84% (26/31)
* Condition: 83% (10/12)
* MCDC: 67% (4/6) conditions reversed the outcome

The Simulink Design Verifier report lists six test cases for the extracted model that
satisfy the objectives not covered in the existingcov. cvt file.

The Simulink Design Verifier report indicates that two coverage objectives in the
Stateflow chart ShiftLogic are proven unsatisfiable. The implicit event tick is never
false because the ShiftLogic chart is updated at every time step. The analysis
cannot satisfy condition or MCDC coverage for either instance of the temporal event
after (TWAIT, tick).

after(TWAIT, tick) is semantically equivalent to

Event == tick && temporalCount(tick) >= TWAIT

If you move after(TWAIT, tick) into the condition, asin
[after(TWAIT, tick) && speed < down th]

Simulink Design Verifier determines that tick is always true, so it only tests the
temporalCount(tick) >= TWAIT part of after (TWAIT, tick). The analysis is



See Also

able to find test objectives that satisfy condition and MCDC coverage for
after (TWAIT, tick).

See Also

More About

. “Generate Test Cases for Missing Coverage Data” on page 9-2
. “Achieve Missing Coverage in Referenced Model” on page 9-3

9-17



9 Achieving Test Cases for Missing Model Coverage

Modified Condition and Decision Coverage in Simulink
Design Verifier

9-18

Depending on the settings you apply for Simulink Coverage coverage recording, there can
be a difference between the definition of modified condition and decision (MCDC)
coverage used for model coverage analysis in Simulink Coverage and that used for test
case generation analysis in Simulink Design Verifier.

MCDC Definitions for Simulink Coverage and Simulink Design
Verifier

Simulink Design Verifier always uses the masking MCDC definition for test case
generation. By default, Simulink Coverage also uses the masking MCDC definition when
recording coverage. However, if you set the CovMcdcMode model configuration
parameter to 'UniqueCause’, Simulink Coverage instead uses the unique-cause MCDC
definition when recording coverage. For information on the differences between the
masking MCDC definition and the unique-cause MCDC definition, see “Modified Condition
and Decision Coverage (MCDC) Definitions in Simulink Coverage” (Simulink Coverage).

Setting the CovMcdcMode model configuration parameter to 'UniqueCause’ can result
in differences between MCDC reporting in Simulink Coverage and test generation in
Simulink Design Verifier. An example of this difference can be seen in analysis results for
logical expressions containing a mixture of AND and OR operators, as in this Stateflow
transition.

Ny

&

[(A&&B) [ C]

e
L

)
fout = 0;} fout=1;}
e

C}“ .

.



Modified Condition and Decision Coverage in Simulink Design Verifier

Given that A, B, and C are each separate inputs, there are five possible ways to evaluate
the condition on the Stateflow transition, shown in the following table.

A B C (A&& B) || C
1 F X F F
2 F X T T
3 T F F F
4 T F T T
5 T T X T

Satisfying MCDC for a Boolean variable requires a pair of condition evaluations, showing
that a change in that variable alone changes the evaluation of the entire expression. In
this example, MCDC can be satisfied for C with either the pair 1, 2 or the pair 3, 4. In
both of those cases, the value of the expression changed because the value of C changed,
while all other variable values stayed the same.

Each pair has a different set of values for A and B which are held constant, but each pair
contains one evaluation where C and out are true and one evaluation where C and out
are false. To satisfy MCDC for C, Simulink Design Verifier test generation analysis accepts
any pair containing one evaluation of true values and one evaluation of false values for C
and out. In this example, Simulink Design Verifier test generation analysis accepts not
only pair 1, 2 and pair 3, 4 but also pair 1, 4 and pair 2, 3. Simulink Coverage model
coverage analysis using the unique-cause MCDC definition is satisfied only by pair 1, 2 or
by pair 3, 4.

The preceding example assumes that A, B, and C are all separate inputs. When input A is
constrained to be the same value as C, as in this model, only a subset of condition
evaluations are possible.

9-19



9 Achieving Test Cases for Missing Model Coverage

9-20

N
1} {2
In
2} - B D-‘} {-Lt—h@
In2 t Cutl
|
M
Chart

This subset of condition evaluations for the Stateflow transition is shown in the following
table.

A B C (A&& B) || C
F X F F
T F T T

5 T T X T

Evaluations 2 and 3 are no longer possible, so neither pair 1, 2 nor pair 3, 4 is possible.
As a result, unique-cause MCDC for C can no longer be satisfied in Simulink Coverage
model coverage analysis. Since pair 1, 4 is still possible, however, Simulink Design
Verifier test generation analysis reports that MCDC for C is satisfiable.

The complexity of MCDC analysis for logical expressions with a mixture of AND and OR
operators causes this difference between results from Simulink Coverage set to unique-
cause MCDC analysis and Simulink Design Verifier. The defaultCovMcdcMode model
configuration parameter value of 'Masking' does not cause this discrepancy. However, if
you require the use of unique-cause MCDC analysis in Simulink Coverage, you can
minimize this effect by using the IndividualObjectives test suite optimization for test
generation analysis in Simulink Design Verifier For more information, see the Tip section
of “Test suite optimization” on page 15-40.




See Also

See Also

More About
. “MCDC” on page 7-33

9-21






Verifying Model Components

* “What Is Component Verification?” on page 10-2
* “Functions for Component Verification” on page 10-4
* “Verify a Component for Code Generation” on page 10-6



10 Verifying Model Components

What Is Component Verification?

10-2

In this section...

“Component Verification Approaches” on page 10-2
“Simulink Design Verifier Tools for Component Verification” on page 10-2

Component Verification Approaches

Component verification lets you test a design component in your model using either of the
following approaches:

Within the context of the model that contains the component — Using
systematic simulation of closed-loop controllers requires that you verify components
within a control system model. Doing so lets you test the control algorithms with your
model. This approach is called system analysis.

As standalone components — For a high level of confidence in the component
algorithm, verify the component in isolation from the rest of the system. This approach
is called component analysis.

Verifying standalone components provides three advantages:

* You can use analysis to focus on portions of the design that you cannot test because
of the physical limitations of the system being controlled.

* You can use this approach for open-loop simulations to test the plant model without
feedback control.

* You can use this approach when the model is unavailable or when you need to
simulate a control system model in accelerated mode for performance reasons.

Simulink Design Verifier Tools for Component Verification

By isolating the component to verify, and using tools that Simulink Design Verifier
provides, you create test cases that let you expand the scope of the testing for large
models. This expanded testing helps you accomplish the following:

Achieve 100% model coverage — If certain model components do not record 100%
coverage, the top-level model cannot achieve 100% coverage. By verifying these
components individually, you can create test cases that fully specify the component
interface, allowing the component to record 100% coverage.




What Is Component Verification?

* Debug the component — To verify that each model component satisfies the specified
design requirements, you can create test cases that verify that specific components
perform as designed.

* Test the robustness of the component — To verify that a component handles
unexpected inputs and calculations properly, you can create test cases that generate
data. Then, test the error-handling capabilities in the component.

10-3



10 Verifying Model Components

Functions for Component Verification

10-4

The Simulink Design Verifier software provides several functions that facilitate the tasks
associated with component verification.

Function

Task

sldvlogsignals

Simulate a Simulink model and log input signals to a Model
block in the model. If you modify the test cases in the Signal
Builder harness model, use this approach for logging input
signals to the harness model itself.

sldvmakeharness

Create a harness model for a component, using logged input
signals if specified, or using the default signals.

For more information about harness models, see “Simulink
Design Verifier Harness Models” on page 13-17.

sldvmergeharness

Merge test cases from several harness models into a single
harness model.

sldvextract

Extract an atomic subsystem or atomic subchart into a new
model.

sldvruntest

Simulate a model, executing the specified test cases to
record model coverage and outport values.

sldvruncgvtest

Invoke the Code Generation Verification (CGV) API, and
execute the specified test cases on the generated code for
the model.

Note To execute a model in different modes of execution,
use the CGV API to verify the numerical equivalence of
results. For more information about the CGV API, see
“Programmatic Code Generation Verification” (Embedded
Coder).

Component verification functions do not support the following Simulink features:

* Variable-step solvers for sldvruntest

* Component interfaces that contain:

* Complex signals




Functions for Component Verification

* Variable-size signals
* Array of buses
* Multiword fixed-point data types larger than 128 bits

10-5



10 Verifying Model Components

Verify a Component for Code Generation

In this section...

“About the Example Model” on page 10-6

“Prepare the Component for Verification” on page 10-8

“Record Coverage for the Component” on page 10-9

“Use Simulink Design Verifier Software to Record Additional Coverage” on page 10-10
“Combine the Harness Models” on page 10-12

“Execute the Component in Simulation Mode” on page 10-13

“Execute the Component in Software-in-the-Loop (SIL) Mode” on page 10-13

About the Example Model

This example uses the slvnvdemo powerwindow model to show how to verify a
component in the context of the model that contains that component. As you work
through this example, you use the Simulink Design Verifier component verification
functions to create test cases and measure coverage for a referenced model. In addition,
you can execute the referenced model in both simulation mode and Software-in-the-Loop
(SIL) mode using the Code Generation Verification (CGV) API.

Note You must have the following product licenses to run this example:

o Stateflow
 Embedded Coder
e Simulink Coder™

The component that you verify is a Model block named control. This component resides
inside the power window control system subsystem in the top level of the
slvnvdemo powerwindow model. The power window control system subsystem is
shown below.

10-6



Verify a Component for Code Generation

reset
position ———— 1
obstacle position
(2 p——» neutral endstop A
driver_neutral detect_obstacle_endstop
3 up
i neutral_up_down -
driv er_up T ﬁ 'endstcup slynvdemo_powerwindow_controller |
__ driver_down maoveldp 1)
=1 obstacle move_up
- validate_driver driver
moveDown
—b.—bﬁaﬁ passenger move down
neutral Ak 4 |
passenger_neutral contral
up
passenger up neutral_up_down f|—
down

validate_passenger

The control Model block references the slvnvdemo powerwindow controller
model.

Simulink Coverage
Power Window Controller

~

¥

endstop

D,
endstop mowvell —Il--'I
2} ubstﬂcI&D ’ movellp

mav ellp

obstacle
driver t Q
driv er owveDown C2)
mnweann -

,.E_ﬂﬁ'rf**'i"ﬁl'i‘r mavelown

1]

¥

@
¥

31

8
¥

passenger
control

10-7



10 Verifying Model Components

The referenced model contains a Stateflow chart control, which implements the logic
for the power window controller.

safe

[ETIIEt (BRI emergency Down
entry:
movellp =0;

(driverNedtral
| entry:

passengerneutral

movelp = 0; o . ;o
moveDown = 0, [passenger|3]] - [passengerZI~—. moveDown = 1;
—2
[ op] [endstopl
J
passengerDown
entry: moveDown = 1; passengerUp —5553:;@;

entry: movelp = 1;
exit. movellp =0,

.

[driver3]] 2 . 7 ¥
2 lendstop]] [ |enostop:

exit: moveDown = 0;

arter(s, tick)
[passenger1]]

| A

(driverDown ¥
entry: maoveDown = 1;

iniCriverDown
exit. moveDown = 00;

After(5 tick)
[driver[1]} J\{

)2

driverlp
entry: movellp = 1;
exit movelp =10;

M

2-('j |—_ [driver[1]]

autoDriverlp
—/

river1]] [driver[1]]
[driver[2]]

1
/ C
et )
[arveral

{,;

Prepare the Component for Verification

To verify the referenced model slvnvdemo powerwindow controller, create a
harness model that contains the input signals that simulate the controller in the plant
model:

1  Open the slvnvdemo powerwindow example model and the referenced model:

open_system('slvnvdemo powerwindow');
open_system('slvnvdemo powerwindow controller');

2  Open the power window control system subsystem in the example model.
The Model block named control in the power window control system

subsystem references the component that you verify during this example,
slvnvdemo powerwindow controller.

10-8



Verify a Component for Code Generation

6

Simulate the Model block that references the
slvnvdemo powerwindow controller model and log the input signals to the
Model block:

loggedSignalsPlant = sldvlogsignals(

‘slvnvdemo powerwindow/power window control system/control');
sldvlogsignals stores the logged signals in LoggedSignalsPlant.
Generate a harness model with the logged signals:

harnessModelFilePath = sldvmakeharness(
'slvnvdemo powerwindow controller', loggedSignalsPlant);

sldvmakeharness creates and opens a harness model named
slvnvdemo powerwindow controller harness. The Signal Builder block
contains one test case containing the logged signals.

For more information about harness models, see “Simulink Design Verifier Harness
Models” on page 13-17.

For use later in this example, save the name of the harness model:

[~, harnessModel] = fileparts(harnessModelFilePath);
Leave all windows open for the next part of this example.

Next, you will record coverage for the slvnvdemo_powerwindow_controller model.

Record Coverage for the Component

Model coverage is a measure of how thoroughly a test case tests a model, and the
percentage of pathways that a test case exercises. To record coverage for the
slvnvdemo powerwindow_controller model:

1

Create a default options object, required by the sldvruntest function:

runOpts = sldvruntestopts;
Specify to simulate the model, and record coverage:

runOpts.coverageEnabled = true;
Simulate the referenced model and record coverage:

[~, covDataFromLoggedSignals] = sldvruntest(
"slvnvdemo powerwindow controller', loggedSignalsPlant, runOpts);

10-9



10 Verifying Model Components

10-10

4 Display the HTML coverage report:
cvhtml('Coverage with Test Cases', covDataFromLoggedSignals);
The slvnvdemo powerwindow controller model achieved:

* Decision coverage: 40%
* Condition coverage: 35%
* MCDC coverage: 10%

For more information about decision coverage, condition coverage, and MCDC
coverage, see “Types of Model Coverage” (Simulink Coverage).

Because you did not achieve 100% coverage for the
slvnvdemo_powerwindow controller model, next, you will analyze the model to
record additional coverage and create additional test cases.

Use Simulink Design Verifier Software to Record Additional
Coverage

You can use Simulink Design Verifier to analyze the

slvnvdemo powerwindow controller model and collect coverage. You can specify
that the analysis ignore any previously satisfied objectives and record additional
coverage.

To record additional coverage for the model:
1 Save the coverage data that you recorded for the logged signals in a file:

cvsave('existingCovFromLoggedSignal', covDataFromLoggedSignals);
2 Create a default options object for the analysis:

opts = sldvoptions;

3 Specify that the analysis generate test cases to record decision, condition, and
modified condition/decision coverage:

opts.ModelCoverageObjectives = 'MCDC';

4 Specify that the analysis ignore objectives that you satisfied when you logged the
signals to the Model block:

opts.IgnoreCovSatisfied = 'on';



Verify a Component for Code Generation

10

Specify the name of the file that contains the satisfied objectives data:

opts.CoverageDataFile = 'existingCovFromLoggedSignal.cvt';
Specify that the analysis not display unsatisfiable objectives in the Diagnostic Viewer:

opts.DisplayUnsatisfiableObjectives = 'off"';

For this example, the focus is on satisfying as many objectives as possible.
Specify that the analysis create long test cases that satisfy several objectives:

opts.TestSuiteOptimization = 'LongTestcases';

Creating a smaller number of test cases each of which satisfies multiple test
objectives saves time when you execute the generated code in the next section.

Specify to create a harness model that references the component using a Model
block:

opts.saveHarnessModel = 'on';
opts.ModelReferenceHarness = 'on';

The harness model that you created from the logged signals in “Prepare the
Component for Verification” on page 10-8 uses a Model block that references the
slvnvdemo powerwindow controller model. The harness model that the analysis
creates must also use a Model block that references

slvnvdemo powerwindow controller. You can append the test case data to the
first harness model, creating a single test suite.

Analyze the model using Simulink Design Verifier:

[status, fileNames] = sldvrun('slvnvdemo powerwindow controller"',
opts, true);

The analysis creates and opens a harness model
slvnvdemo powerwindow controller harness. The Signal Builder block
contains one long test case that satisfies 74 test objectives.

You can combine this test case with the test case that you created in “Prepare the
Component for Verification” on page 10-8, to record additional coverage for the
slvnvdemo powerwindow controller model.

Save the name of the new harness model and open it:

[~, newHarnessModel] = fileparts(fileNames.HarnessModel);
open_system(newHarnessModel) ;

10-11



10 Verifying Model Components

10-12

Next, you will combine the two harness models to create a single test suite.

Combine the Harness Models

You created two harness models when you:

Logged the signals to the control Model block that references the
slvnvdemo powerwindow controller model.

Analyzed the slvnvdemo powerwindow controller model.

If you combine the test cases in both harness models, you can record coverage that gets
you closer to achieving 100% coverage:

1

Combine the harness models by appending the most recent test cases to the test
cases for the logged signals:

sldvmergeharness(harnessModel, newHarnessModel);

The Signal Builder block in the slvnvdemo powerwindow controller harness
model now contains both test cases.

Log the signals to the harness model:

loggedSignalsMergedHarness = sldvlogsignals(harnessModel);

Use the combined test cases to record coverage for the
slvnvdemo powerwindow controller harness model. First, configure the
options object for sldvruntest:

runOpts = sldvruntestopts;
runOpts.coverageEnabled = true;
Simulate the model and record and display the coverage data:
[~, covDataFromMergedSignals] = sldvruntest(
"slvnvdemo powerwindow controller', loggedSignalsMergedHarness,

runOpts);
cvhtml('Coverage with Merged Test Cases', covDataFromMergedSignals);

The slvnvdemo powerwindow controller model now achieves:

* Decision coverage: 100%
* Condition coverage: 80%



Verify a Component for Code Generation

* MCDC coverage: 60%

Execute the Component in Simulation Mode

To verify that the generated code for the model produces the same results as simulating
the model, use the Code Generation Verification (CGV) API methods.

Note To execute a model in different modes of execution, use the CGV API to verify the
numerical equivalence of results. For more information about the CGV API, see
“Programmatic Code Generation Verification” (Embedded Coder).

When you perform this procedure, the simulation compiles and executes the model code
using both test cases.

1 Create a default options object for sldvruncgvtest:

runcgvopts = sldvruntestopts('cgv');
2 Specify to execute the model in simulation mode:

runcgvopts.cgvConn = 'sim';

3 Execute the slvnv_powerwindow controller model using the two test cases and
the runcgvopts object:

cgvSim = sldvruncgvtest('slvnvdemo powerwindow controller',
loggedSignalsMergedHarness, runcgvopts);

These steps save the results in the workspace variable cgvSim.

Next, you will execute the same model with the same test cases in Software-in-the-Loop
(SIL) mode and compare the results from both simulations.

For more information about Normal simulation mode, see “Execute the Model”
(Embedded Coder).

Execute the Component in Software-in-the-Loop (SIL) Mode

When you execute a model in Software-in-the-Loop (SIL) mode, the simulation compiles
and executes the generated code on your host computer.

10-13



10 Verifying Model Components

10-14

In this section, you execute the slvnvdemo powerwindow controller model in SIL
mode and compare the results to the previous section, when you executed the model in
simulation mode.

1

Specify to execute the model in SIL mode:

runcgvopts.cgvConn = 'sil’';
Execute the slvnv_powerwindow controller model using the two test cases and
the runcgvopts object:

cgvSil = sldvruncgvtest('slvnvdemo powerwindow controller',
loggedSignalsMergedHarness, runcgvopts);

The workspace variable cgvSil contains the results of the SIL mode execution.

Compare the results in cgvSil to the results in cgvSim, created from the simulation
mode execution. Use the compare method to compare the results from the two
simulations:

for i=1:1length(loggedSignalsMergedHarness.TestCases)
simout = cgvSim.getOutputData(i);
silout = cgvSil.getOutputData(i);
[matchNames, ~, mismatchNames, ~ ] = ...
cgv.CGV.compare(simout, silout);
end

Display the results of the comparison in the MATLAB Command Window:

fprintf(['\nTest Case(%d):%d Signals match, %d Signals mismatch\r'],...
i, length(matchNames), length(mismatchNames));

As expected, the results of the two simulations match.

For more information about Software-in-the-Loop (SIL) simulations, see “What Are SIL
and PIL Simulations?” (Embedded Coder).



Considering Specified Minimum and
Maximum Values for Inputs During
Analysis

*  “Minimum and Maximum Input Constraints” on page 11-2
» “Specify Input Ranges on Simulink and Stateflow Elements” on page 11-4
* “Specify Input Ranges in sldvData Fields” on page 11-11



11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Minimum and Maximum Input Constraints

11-2

In this section...

“Simulink Design Verifier Support for Specified Input Minimum and Maximum Values”
on page 11-2
“Limitations of Simulink Design Verifier Support for Specified Minimum and Maximum

Values” on page 11-3

When creating a model, you can specify minimum and maximum values on input ports to
mimic environmental constraints as part of your design. The Simulink Design Verifier
analysis can automatically consider these values as constraints for:

* Design error detection
» Test case generation
* Property proving

Specifying minimum and maximum input values is similar to using the Test Condition
block to constrain signals for test case generation or the Proof Assumption block to
constrain signals for property proving. The Test Condition and Proof Assumption blocks
capture the analysis constraints. The Simulink Design Verifier software can also consider
the design constraints captured in the Inport block minimum and maximum parameters
as constraints for analysis.

Note For more information about signal values, see “Signal Values” (Simulink).

Simulink Design Verifier Support for Specified Input Minimum
and Maximum Values

By default, Simulink Design Verifier considers any minimum and maximum input values
specified for Inport blocks in your model. To enable this capability:

In the model window, select Analysis > Design Verifier > Options.
2  On the Design Verifier pane, select the Use specified input minimum and
maximum values parameter.

3  After the analysis completes, to view the design minimum and maximum constraints
for your model, click Generate detailed analysis reports.



See Also

The constraints are listed in the Analysis Information chapter of the Simulink
Design Verifier report.

Limitations of Simulink Design Verifier Support for Specified
Minimum and Maximum Values

Simulink Design Verifier support for specified minimum and maximum values has the
following limitations:

* The analysis considers specified minimum and maximum values on root-level Inport
blocks only. The analysis ignores minimum and maximum values specified on other
Simulink blocks.

See Also

More About

. “Signal Ranges” (Simulink)

11-3



11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Specify Input Ranges on Simulink and Stateflow
Elements

When you specify input range constraints on Simulink and Stateflow elements, Simulink
Design Verifier considers these constraints during analysis.

In this section...

“Specify Input Ranges for Inport Blocks” on page 11-4

“Specify Input Ranges for Simulink.Signal Objects” on page 11-5
“Specify Input Ranges for Stateflow Data Objects” on page 11-6
“Specify Input Ranges for Subsystems” on page 11-7

“Specify Input Ranges for Global Data Stores” on page 11-8
“Specify Input Ranges for Bus Elements” on page 11-9

Specify Input Ranges for Inport Blocks

After you specify the output minimum and maximum values on Inport blocks (Simulink),
Simulink Design Verifier analysis uses the minimum and maximum values as constraints.

The following example model restricts the signals from two Inport blocks:

* Inputl block: Minimum: 1, Maximum: 5
» Input2 block: Minimum: -1, Maximum: 1

Inputi i
A Compare
[1. 5 To Zero >
R D
- Out1
Logical
B p|==0 Operator
Input2
41 Compare
e To Zeroi

When you use Simulink Design Verifier, to analyze this model, the analysis produces these
results:

11-4




Specify Input Ranges on Simulink and Stateflow Elements

* The output from Inputl is never less than 0, therefore the first input to the Logical
Operator block is never false. The objective that the first input to the Logical
Operator equals false is unsatisfiable.

* The Logical Operator block cannot achieve 100% modified condition/decision coverage
(MCDC) coverage because the condition where the first input is false never occurs.

The detailed analysis report shows the values you use as constraints for Inputl and

Input2.

Specify Input Ranges for Simulink.Signal Objects

Using the Model Explorer, in the model workspace, you can specify minimum and
maximum values (Simulink) on Simulink.Signal objects associated with input signals.

The following example model uses the Simulink.Signal objects associated with the
input signals a and b to restrict the signal values:

* Signal a: Minimum: 1, Maximum: 5

* Signal b: Minimum: -1, Maximum: 1

=0
Inp:-Lrt“I_5i|;;|-E‘=l >
. @ R (1)
Out1 s
.-Eb %=1 4| =4

When you analyze this model, the results are the same as if you specified the minimum
and maximum values on the input ports.

Specifying Signal Ranges on Inport Blocks and Signals
If you specify ranges on the Inport blocks and on the signals, the analysis considers the
smallest range for the values. For example, if you specify a range of 4. .12 on an input

port and a range of 1. .8 on the signal from the input port, the analysis considers the
range 4. .8.

11-5



11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-6

Specify Input Ranges for Stateflow Data Objects

Using the Model Explorer, you can specify ranges on data objects that are directly
connected to the root-level input ports (Simulink) for a Stateflow chart.

In the following example model, the Stateflow chart named Chart has a data object, x,
whose range you specified as 0 < x < 10. In this chart, x must be greater than 15 to
trigger the transition from low to high.

xhasrange 0< x< 10

The value of x ranges from 0 through 10, therefore the transition condition [x > 15] is
never true. The transition from low to high never occurs. Because the high state is
never entered, the transition condition [x < 15] is never tested, and the transition from
high to low never occurs. The chart is always in the lLow state.

When you analyze this model, these objectives are proven unsatisfiable:

* The high state is never entered.
* The transition condition [x > 15] is always false, never true.
* The condition [x < 15] is never tested, so it is never true or false.

The analysis report indicates the values that you use as constraints for x: [0, 10].



Specify Input Ranges on Simulink and Stateflow Elements

Specify Input Ranges for Subsystems

The Simulink Design Verifier software considers specified input minimum and maximum
values as constraints only at the top level of a model. You can specify minimum and
maximum values on Input ports (Simulink) on subsystems, but when you analyze the top-
level model, the software ignores those values.

When you perform the subsystem analysis, the software considers specified minimum and
maximum values on the input ports of the subsystem.

For example, consider the following model and its subsystem.

(C——»{ £ Fpfssi ssouf—»( 1)
Input3 - Out2
o Saturation

-20 to 20

Subsystem

In Subsystem, the specified minimum and maximum values for input port SSIn are -10
and 10, respectively. The lower and upper limits for the Saturation block are -15 and 15,
respectively.

Cor—HFr—>C
SEh o SEout
L 10, 10] sirstion

-1510 18

If you right-click Subsystem in the top-level model and select Design Verifier >
Generate Tests for Subsystem, the analysis considers the specified minimum and
maximum values as constraints on the SSIn port.

Constraints

Design Min Max Constraints

Name Design Min Max Constraint
SSIn [-10, 10]

11-7



11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-8

The analysis identifies two unsatisfiable objectives:

* input > lower limit F: The input is always greater than the lower limit on the
Saturation block (-15).

* input >= upper limit T: The input is never greater than or equal to the upper limit on
the Saturation block (15).

If you analyze the model that contains Subsystem, the analysis does not consider the
values specified on the input port SSIn in the subsystem. The analysis considers only the
root-level input ports at the respective level of the hierarchy for analysis.

Specify Input Ranges for Global Data Stores

A data store is a repository to which you can write data and from which you can read
data, without having to connect an input or output signal directly to the data store. You
create a data store by using a Data Store Memory block or a Simulink.Signal object.
You can specify minimum and maximum values (Simulink) for any data store.

During subsystem analysis, Simulink Design Verifier creates an input port to mimic the
execution context for a global data store. For more information, see “Extract Subsystems
for Analysis” on page 14-15. If the data store has specified minimum and maximum
values, those values are assigned as minimum and maximum values on the new input
port. Simulink Design Verifier analysis considers the input minimum and maximum values
as subsystem-level analysis constraints.

In the following example model, data store A has a minimum value of 0 and a maximum
value of 10.

. out |———» ()
Cata Siore Gt
Memary Subsystem

The atomic subsystem reads values from the data store and checks to see if the input is
less than 0. The Compare To Zero block outputs 1 if the input is less than 0, and outputs 0
if the input is greater than or equal to 0. The Test Objective block checks to see if the
output is ever 1.



Specify Input Ranges on Simulink and Stateflow Elements

i

<0 —@

Cutl

1=
¥

Data Store Compare
Read ToZero

In the top-level model, if you right-click Subsystem and select Design Verifier >
Generate Tests for Subsystem, the analysis considers the constraints for data store A to
be [0, 10].

The analysis does not satisfy the objective specified in the Test Objective block. The input
is always greater than or equal to 0, therefore the output from the Compare To Zero block
is always 0.

Specify Input Ranges for Bus Elements

When you define a bus, you can specify minimum and maximum values for the elements in
the bus (Simulink). Simulink Design Verifier considers these minimum and maximum
values when analyzing subsystems and models that use the bus as an input signal.

Consider a subsystem that inputs a bus of three fields, each with a defined minimum and
maximum. To view this subsystem, at the command line, enter:

open_system(fullfile(docroot, 'toolbox', 'sldv', '"examples',
'sldvBusMinMaxExample'))

il e »

Subsystem

11-9



11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Bus Element Bus Element Minimum Bus Element Maximum
vehicleSpeed 0 125

throttle 0 100

engineSpeed 0 7600

The subsystem has test objectives that confirm that each element does not exceed a
constant. The vehicleSpeed signal is limited to a maximum value lower than the test

objective.
(1 e A ——————— »( 1)
In1 : Outl

== 13§

< yehleSpeed> HiLim VehSpd

== 498
< throttle>
HiLim Thr
true
<enginefpesd=
2= 7200
HiLim EngSpd

Set the current folder to a writable folder. In the top-level mode, right-click Subsystem
and select Design Verifier > Generate Tests for Subsystem. The Condition Objective
for testing vehicleSpeed > 135 is not satisfiable due to the maximum specification on

the vehicleSpeed element.

11-10



Specify Input Ranges in sldvData Fields

Specify Input Ranges in sldvData Fields

When you analyze a model, Simulink Design Verifier generates a data file when it
completes its analysis. The data file is a MAT-file that contains an sldvData structure.
The sldvData structure stores all the data that the software gathers and produces
during the analysis. You can use the data file to customize your own analysis or to
generate a custom report.

If your model contains specified minimum and maximum values on the input ports, the
sldvData structure contains information about those values. For example, after
analyzing the ex_minmax_on_inports model in “Specify Input Ranges for Inport
Blocks” on page 11-4, the data file contains the following values:

* For the Inputl block:
sldvData.Constraints.DesignMinMax (1) .value{1l}.low
ans =

1
sldvData.Constraints.DesignMinMax (1) .value{1l}.high
ans =

5
» For the Input2 block:

sldvData.Constraints.DesignMinMax(2) .value{1l}.low
ans =

-1
sldvData.Constraints.DesignMinMax(2) .value{1l}.high

ans =

11-11






Proving Properties of a Model

* “What Is Property Proving?” on page 12-2

» “Workflow for Proving Model Properties” on page 12-4

* “Prove Properties in a Model” on page 12-5

* “Prove System-Level Properties Using Verification Model” on page 12-25
* “Prove Properties in a Subsystem” on page 12-29

* “Model Requirements” on page 12-30



12 Proving Properties of a Model

What Is Property Proving?

12-2

A property is a requirement that you model in Simulink or Stateflow, or using MATLAB
Function blocks. A property can be a simple requirement, such as a signal in your model
that must attain a particular value or range of values during simulation.

A property can also be a requirement on the model that involves a number of input and
output signals modeled as a logical expression that needs to be proved.

The Simulink Design Verifier software performs a formal analysis of your model to prove
or disprove the specified properties. After completing the analysis, the software offers
several ways for you to review the results:

* Highlighted on the model

* A harness model with test cases

* A detailed HTML report

Proof Blocks

The Simulink Design Verifier software provides two blocks so you can specify property
proofs in your Simulink models:

* Proof Objective — Define the values of a signal to prove
* Proof Assumption — Constrain the values of a signal during a proof

Note Blocks from the Model Verification library in the Simulink software behave like
Proof Objective blocks during Simulink Design Verifier proofs. You can use Assertion
blocks and other Model Verification blocks to specify properties of your model. For more
information about these blocks, see “Model Verification” (Simulink).

Proof Functions

The Simulink Design Verifier software provides two Stateflow and MATLAB for code
generation functions to specify property proving for a Simulink model or Stateflow chart:

* sldv.prove — Specifies a proof objective
* sldv.assume — Specifies a proof assumption



What Is Property Proving?

These functions:
» Identify mathematical relationships for proving properties in a form that can be more
natural than using block parameters

» Support specifying multiple objectives, assumptions, or conditions without
complicating the model.

* Provide access to the power of MATLAB.
* Support separation of verification and model design.

For an example of how to use these proof functions, see the sldv.prove reference page.

Note Simulink Design Verifier blocks and functions are saved with a model. If you open
the model on a MATLAB installation that does not have a Simulink Design Verifier license,
you can see the blocks and functions, but they do not produce results.

12-3



12 Proving Properties of a Model

Workflow for Proving Model Properties

12-4

To prove properties of your design model, use the following workflow:

1

5

Determine the verification objectives for your design model, e.g., based on your
requirements specifications.

Instrument your design model to specify proof objectives and proof assumptions.
* For simple properties, instrument your model with blocks or MATLAB functions
that specify the proof objectives.

» For system-level properties, construct a verification model that contains a Model
block that references the design model and define the properties on the design
model interface using the same inputs and outputs.

Define analysis constraints using the Proof Assumption block or sldv.assume. These
constraints apply to all enabled proof objectives.

Note The proof assumptions are applied to all enabled proof objectives. Make sure
that you do not specify any contradictory assumptions because that might invalidate
the entire analysis.

Specify options that control how Simulink Design Verifier proves the properties of
your model.

Execute the Simulink Design Verifier analysis and review the results.

For an exercise that demonstrates this workflow, see “Prove Properties in a Model” on
page 12-5.



Prove Properties in a Model

Prove Properties in a Model

In this section...

“About This Example” on page 12-5

“Construct Example Model” on page 12-6

“Check Compatibility of Example Model” on page 12-7
“Instrument Example Model” on page 12-8
“Configure Property-Proving Options” on page 12-9
“Analyze Example Model” on page 12-10

“Review Analysis Results” on page 12-10
“Customize Example Proof” on page 12-19
“Reanalyze Example Model” on page 12-20
“Review Results of Second Analysis” on page 12-20
“Analyze Contradictory Models” on page 12-23
“Prove Properties in a Large Model” on page 12-24

About This Example

The following sections describe a Simulink model, for which you prove a property that you
specify using a Proof Objective block. This example demonstrates the property-proving

capabilities of Simulink Design Verifier.

In this example, you perform the following tasks.

Task Description See...

1 Construct the example model. “Construct Example Model” on page 12-6

2 Verify that your model is “Check Compatibility of Example Model” on
compatible with Simulink Design |page 12-7
Verifier.

3 Add a Proof Objective block to “Instrument Example Model” on page 12-
your model to prepare for its 8
proof.

12-5



12 Proving Properties of a Model

Task |Description See...

4 Configure Simulink Design “Configure Property-Proving Options” on
Verifier to prove properties. page 12-9

5 Prove a property of your model. |“Analyze Example Model” on page 12-10
Review the analysis results. “Review Analysis Results” on page 12-10

Add proof assumptions to specify |“Customize Example Proof” on page 12-19
analysis constraints.

8 Prove a property of the “Reanalyze Example Model” on page 12-20
customized model and interpret
the results.

Construct Example Model

Construct a Simulink model to use in this example:

1 Create an empty Simulink model.
2 Copy the following blocks into your empty model window:
* From the Sources library, an Inport block to initiate the input signal whose value
Simulink Design Verifier controls

* From the Logic and Bit Operations library, a Compare To Zero block to provide
simple logic

* From the Sinks library, an Outport block to receive the output signal
3 Connect these blocks such so your model appears similar to the following model:

In1 Out1
Compare

To Zero

4 In the model window, select Simulation > Model Configuration Parameters.

On the left side of the Configuration Parameters dialog box, in the Select tree, click
the Solver category. On the right side, under Solver selection:

* Set the Type option to Fixed-step.

12-6



Prove Properties in a Model

* Set the Solver option to Discrete (no continuous states).

The Simulink Design Verifier can analyze only models that use a fixed-step solver.
Click OK to save your changes and close the Configuration Parameters dialog box.
7  Save your model with the name ex property proving example basic.

Check Compatibility of Example Model

Every time Simulink Design Verifier software analyzes a model, before the analysis
begins, the software performs a compatibility check. If your model is not compatible, the
software cannot analyze it.

You can also make sure you model is compatible with Simulink Design Verifier before you
start the analysis:

Open the ex_property proving example basic model.

2 In the model window, select Analysis > Design Verifier > Check Compatibility >
Model.

The Simulink Design Verifier software displays the log window, which states whether
or not your model is compatible.

The model you just created is compatible.

12-7



12 Proving Properties of a Model

12-8

Simulink Design Verifier Results Summary: ex_property_proving_example_basic >

27-Jun-2017 16:24:40

Checking compatibility for test generation: model
'ex_property_proving_example_basic’

Compiling model...done

Checking compatibility...done

27-Jun-2017 16:24:42
'ex_property_proving_example_basic' is compatible for test generation with
Simulink Design Verifier,

Save Log Generate Tests Close

What If a Model Is Partially Compatible?

If the compatibility check indicates that your model is partially compatible, your model
contains at least one object that Simulink Design Verifier does not support. You can
analyze a partially compatible model, but, by default, unsupported objects are stubbed
out. The results of the analysis may be incomplete. For detailed information about
automatic stubbing, see “Handle Incompatibilities with Automatic Stubbing” on page 2-8.

Instrument Example Model

Prepare your example model so that you can prove its properties with Simulink Design
Verifier. Specifically, instrument the model by adding and configuring a Proof Objective
block:

1 In the MATLAB Command Window, enter sldvlib.

The Simulink Design Verifier library appears.



Prove Properties in a Model

Open the Objectives and Constraints sublibrary.

Copy the Proof Objective block to your model and insert it between the Compare To
Zero and Outport blocks.

4 In your model, double-click the Proof Objective block.

The Proof Objective block parameters dialog box opens.
5 In the Values box, enter 1.

The Simulink Design Verifier software will attempt to prove that the signal output by
the Compare To Zero block always attains this value for any signals that it receives.

6 Click OK to apply your changes and close the Proof Objective block parameters
dialog box.

CO— = — 0>
In Ot
Compare
To Zero

7  Save your model and keep it open.

Configure Property-Proving Options

Configure Simulink Design Verifier to prove properties of the
ex_property proving example basic model that you instrumented:
Open the ex property proving example basic model.
In your Simulink model window, select Analysis > Design Verifier > Options.

On the left side of the Configuration Parameters dialog box, in the Select tree, select
the Design Verifier category. Under Analysis options on the right side, set the
Mode parameter to Property proving.

4  Click OK to apply your changes and close the Configuration Parameters dialog box.

Note On the Property Proving pane, you can optionally specify values for other
parameters that control how Simulink Design Verifier proves properties of your
model. For more information, see “Design Verifier Pane: Property Proving” on page
15-57.

12-9



12 Proving Properties of a Model

5 Savethe ex property proving example basic model.

Analyze Example Model

To analyze the ex property proving example basic model, in the model window,
select Analysis > Design Verifier > Prove Properties > Model. The Simulink Design
Verifier software begins a property-proving analysis.

During the analysis, the log window shows the progress of the analysis. It displays
information such as the number of objectives processed and which objectives were
satisfied or falsified.

To terminate the analysis at any time, in the log window, click Stop.

Review Analysis Results

When the analysis is complete, the log window displays the following options for
reviewing the results:

* Highlight the analysis results on the model

* Generate a detailed HTML analysis report

* Create a harness model with test cases

» Simulate the test cases created by the model and produce a model coverage report

You can also view the Simulink Design Verifier data file. For detailed information about
the data file, see “Simulink Design Verifier Data Files” on page 13-10.

The following sections describe how you can review the analysis results:

* “Review Results on Model” on page 12-10

* “Review Detailed Analysis Report” on page 12-13

* “Review Harness Model” on page 12-15

» “Simulate Model with Counterexample” on page 12-17

* “Review Analysis Results in the Model Explorer” on page 12-18

Review Results on Model

You can review the analysis results at a glance by viewing the blocks that are highlighted
in the model window. The highlighting can have four colors:

12-10



Prove Properties in a Model

* Green — The analysis proved all the proof objectives valid.

* Red — The analysis disproved a proof objective and generated a counterexample that
falsified that objective.

* Orange — The analysis disproved a proof objective, but it could not generate a
counterexample or the proof objective remained undecided. This result occurs due to:

A proof objective on a signal whose value the software cannot control, for example,
a Constant block

A proof objective that depends on nonlinear computation
A proof objective that creates an arithmetic error, such as division by zero

Automatic stubbing being enabled, and the analysis encountering an unsupported
block whose operation it does not understand but that the analysis requires to
generate the counterexample

The analysis timing out
Limitations of the analysis engine

* Gray — The model object was not part of the analysis.

Highlight the analysis results on the example model:

1

In the log window for the ex property proving example basic analysis, click

Highlight analysis results on model.

CO— <o} —

Im Out1
Compare

To Zero

The Proof Objective block is highlighted in red, which indicates that a proof objective
was falsified with a counterexample.

The Simulink Design Verifier Results window appears.

12-11



12 Proving Properties of a Model

12-12

PL Results: ex_property_proving_example_basic — O >

Property proving completed normally.
1/1 objective is falsified.

Results:

* View tests in Simulation Data Inspector
* Detailed analysis report: (HTML) (FDF)
* Create harness model

* Export test cases to Simulink Test

As you click objects in the model, this window changes to display detailed analysis
results for that object.

PL Results: ex_property_proving_example_basic — O *
- A
Back to summary

ex_property_proving_example_basic/Proof Objective
Objective: T ERROR - View counterexample

Tip By default, the Simulink Design Verifier Results window is always the topmost

visible window. To allow the window to move behind other window, click & and clear
Always on top.

Click the highlighted Proof Objective block.

The Simulink Design Verifier Results window indicates that the proof objective that
the output signal from the Compare to Zero was not 1 was disproved with a
counterexample.



Prove Properties in a Model

Review Detailed Analysis Report

To create a detailed HTML analysis report:

1

In the Simulink Design Verifier log window, click Generate detailed analysis
report.

The HTML report opens in a browser window.

The report includes the following Table of Contents. Click a hyperlink to navigate to
particular section in the report.

Table of Contents

1. Summary
2. Analysis Information

3. Proof Ohjectives Status
4. Properties

In the Table of Contents, click Summary.
Chapter 1. Summary

Analysis Information

Model: ex_property_proving_example basic
Mode: Property proving

Status: Completed normally

Analysis Time: 11s

The Summary provides an overview of the analysis results, and it indicates that
Simulink Design Verifier identified a counterexample that falsifies an objective in
your model.

Scroll back to the top of the browser window. In the Table of Contents, click Proof
Objectives Status.

12-13



12

Proving Properties of a Model

12-14

Objectives Falsified with Counterexamples

Analysis
# [Tvpe Model Item Description Time Counterexample
(sec)
1 PI?Gf. __|Proof Objective Objective: T 12 1
objective

The Objectives Falsified with Counterexamples table lists the proof objectives that
Simulink Design Verifier disproved using a counterexample that it generated. You can
locate the objective in your model window by clicking Proof Objective; the
software highlights the corresponding Proof Objective block in your model window.

5 In the Objectives Falsified with Counterexamples table, under the Counterexample
column, click 1.

Proof Objective

Summary

Model Item: Proof Objective
Property:  Objective: T
Status: Falsified

Counterexample

Time|
Step |1
Inl |1

This section displays information about proof objective 1 and provides details about
the counterexample that Simulink Design Verifier generated to disprove that
objective. In this counterexample, a signal value of 99 falsifies the objective that you



Prove Properties in a Model

specified using the Proof Objective block. That is, 99 is not less than or equal to 0,
which causes the Compare To Zero block to return 0 (false) instead of 1 (true).

Review Harness Model

Create a harness model with counterexamples that falsify the proof objectives in your
model:

1 In the Simulink Design Verifier log window, click Create harness model.

The software creates a harness model named
ex _property proving example basic harness.

Size Type
Counterexample 1
% In Int outif——#("1 )
(KR Out1
Inputs Test Unit {copied from ex_property_proving_e:ample)
=
DoC
Text

Test Case Explanation

The harness model contains the following items:

» Signal Builder block named Inputs — A group of signals that falsify proof
objectives.

* Subsystem block named Test Unit — A copy of your model.

* DocBlock named Test Case Explanation — A textual description of the
counterexamples that the analysis generates.

* A Size-Type block — A subsystem that transmits signals from the Inputs block to
the Test Unit block. This block verifies that the size and data type of the signals
are consistent with the Test Unit block.

2  Double-click the Inputs block.

12-15



12 Proving Properties of a Model

u Signal Builder (ex_property_proving_example_harness/Inputs) E@
File Edit Group Signal Axes Help ¥
SH AB@B oo | —TLEEREE 0 on | R
Active Group: | Counterexample 1 vi @, | - =
F e R R bR LR LR
||-|1 1 1 1 1 1 : 1 1 1 [
e
1.6_ """""""""" b D TT=TTTT====" F=-=======5========== 'i """"" b L l
L e e e S
42 e ] S A SO I S S
1 . . . . . . . . . ¢
0.8--------- oo it S RRRRREEEE booooooee oo Ao Rt R RRRRREE oo .
DB [ - m - m et o
0_4__________.__________4__________;__________L__________.__________4: ____________________________________________
'}-2_ _________ mTT T T T T i T-~~"T"T° =77 r=-=-=-====7"7 (i 'i __________ b r=-==-======"7 mT Tttt T A
0 | | | | | | | | | |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time (sec)
Left Point Right Point Inl (shown) >
Harme: |In1 T T
Index: 1 vi ¥: Y:
ok In1 (#1) [¥Min YMax ]

12-16

The input signal 1 causes the output of the Compare to Zero block to be 0. This
counterexample violates the proof objective that specifies that the output of the
Compare to Zero block be 1.



Prove Properties in a Model

Simulate Model with Counterexample

Simulate the harness model to observe the counterexample that falsifies the proof
objective in your model:

1

In the ex_property proving example basic model window, select View >
Library Browser

From the Sinks library, copy a Scope block into your harness model window. The
Scope block allows you to see the value of the signal output by the Compare To Zero
block in your model.

In your harness model window, connect the output signal of the Test Unit subsystem
to the Scope block.

Size Type

Counterexample 1
(KR Out1

Inputs Test Unit {copied from ex_property_proving_e:amgle)
=
DoC
Text
Test Case Explanation ol
Scope

In your harness model window, select Simulation > Run to begin the simulation.

The Simulink software simulates the harness model.

In your harness model window, double-click the Scope block to open its display
window.

12-17



12 Proving Properties of a Model

12-18

B scope = e
AN LI

The Scope block displays the value of the signal output by the Compare To Zero block
in your model. In this example, the Compare To Zero block returns 0 (false)
throughout the simulation, which falsifies the proof objective that the output of the
Compare to Zero block be 1 (true). The counterexample that the Signal Builder block
supplies falsifies the proof objective.

Review Analysis Results in the Model Explorer

As long as your model remains open, you can view the results of your most recent
Simulink Design Verifier analysis results in the Model Explorer.

In the Simulink Editor, select Analysis > Design Verifier > Latest Results. The Model
Explorer opens, and the results of the latest Simulink Design Verifier analysis appear in
the right-hand pane.

For any Simulink Design Verifier analysis, from the Model Explorer, you can perform the
following tasks.



Prove Properties in a Model

Task

For more information

Highlight the analysis results on the model.

“Highlighted Results on the Model” on page
13-2

Generate a detailed analysis report.

“Simulink Design Verifier Reports” on page
13-28

Create the harness model, or if the harness
model already exists, open it.

If no counterexamples were created during
the analysis, this option is not available.

“Simulink Design Verifier Harness Models”
on page 13-17

View the data file.

“Simulink Design Verifier Data Files” on
page 13-10

View the log file.

“Simulink Design Verifier Log Files” on
page 13-57

After you close your model, you can no longer view the analysis results.

Customize Example Proof

Modify the simple Simulink model whose proof objective Simulink Design Verifier
disproved in the previous task. Specifically, customize the proof by adding and

configuring a Proof Assumption block:

1 Inthe MATLAB Command Window, type sldvlib.

The Simulink Design Verifier library opens.
Open the Objectives and Constraints sublibrary.
Copy the Proof Assumption block to your model.

In your model window, insert the Proof Assumption block between the Inport and

Compare To Zero blocks.

5 In your model, double-click the Proof Assumption block to access its attributes.

The Proof Assumption block parameter dialog box opens.

6 In the Values box, enter [-1, 0]. When proving properties of this model, Simulink
Design Verifier constrains the signal values entering the Compare To Zero block to
the specified range. If the input to the Compare to Zero block is always within this
range, the output of the Compare to Zero block will always be 1.

12-19




12 Proving Properties of a Model

12-20

7  Click Apply and then OK to apply your changes and close the Proof Assumption
block parameter dialog box.

1.0 1

-0~ |-+

In1 Out1
Compare

To Zero

8 Save the ex property proving example basic model and keep it open.

Reanalyze Example Model

Analyze the model that you modified to see how the Proof Assumption block affects the
property-proving analysis.

In the ex property proving example basic model window, select Analysis >
Design Verifier > Prove Properties > Model.

When the analysis is complete, the log window displays the options. There is no option to

create a harness model, because the analysis satisfied all proof objectives in your model,
so there are no counterexamples.

Review Results of Second Analysis

Review the results of the second analysis:

* “Review Results on the Model” on page 12-20
» “Review Analysis Report” on page 12-21

Review Results on the Model

Highlight the model to see the analysis results:

1 C(Click Highlight analysis results on model.

The Proof Objective is now highlighted in green.



Prove Properties in a Model

2

[-1. 0]

OO < -0+
Im Cutl
Compare
To Zero

Click the Proof Objective block.

The Simulink Design Verifier Results window shows that the proof objective that

states that the signal be 1 is valid.

'D} Results: ex_property_proving_sxample_with_pa_block  —

a

Pt

[

Back to summary
ex_property_proving_example_with_pa_block/Proof Objective

Objective: T VALID

Review Analysis Report

Review the analysis results in the detailed report:

1
2

Click Generate detailed analysis report.
In the Table of Contents, click Summary.

12-21



12 Proving Properties of a Model

Chapter 1. Summary

Analysis Information

Model:

Mode:

Status:
Analysis Time:

Objectives Status

Number of Objectives: 1
Objectives Valid: 1

ex_property_proving_example_with_pa_block
Property proving
Completed normally

11s

The Summary chapter indicates that Simulink Design Verifier proved a proof

objective in the model.

3 The Constraints section lists the analysis constraint you specified in the Proof

Assumption block.

Constraints

Analysis Constraints

Name Analysis Constraint
Assumption -1,0
ASSUMPLIon

4  Scroll back to the top of the browser window. In the Table of Contents, click Proof

Objectives Status.

12-22



Prove Properties in a Model

Objectives Valid

Analysis
# |Type Model Item Description Time |Counterexample
(sec)
Proof . . _
1 .. |Proof Objective  |Objective: T 3 n'a
objective

The Objectives Proven Valid table lists the proof objectives that Simulink Design
Verifier proved to be valid.

5 Scroll down to view the Properties chapter or go to the top of the browser window

and in the Table of Contents, click Properties.

Proof Objective

Summary

Model Item: Proof Objective

Property:  Objective: T
Status: Valid

The Proof Objective summary indicates that Simulink Design Verifier proved an
objective that you specified in your model. The Proof Assumption block restricts the
domain of the input signals to the interval [-1, 0]. Therefore, the software proves that
this interval does not contain values that are greater than zero, thereby satisfying the

proof objective.

Analyze Contradictory Models

If the analysis produces the error The model is contradictory in its current
configuration, the software detected a contradiction in your model and it cannot
analyze the model. You can have a contradiction if your model has Proof Assumption

12-23



12 Proving Properties of a Model

12-24

blocks with incorrect parameters. For example, an assumption could state that a signal
must be between 0 and 5 when the signal is constant 10.

If the software detects a contradiction, all previous results are invalidated and the
software reports that all the properties are falsified.

Prove Properties in a Large Model

A thorough proof of your model requires that Simulink Design Verifier search through all
reachable configurations of your model—even the ones that are reached only after long
time delays. The computation time and memory required to search a model completely
often make an exhaustive proof impractical.

“Prove Properties in Large Models” on page 14-25 gives detailed information about
strategies you can use to improve the performance of a property-proving analysis of a
large model.



Prove System-Level Properties Using Verification Model

Prove System-Level Properties Using Verification Model

In this section...

“When to Use a Verification Model for Property Proving” on page 12-25
“About this Example” on page 12-25

“Understand the Verification Model” on page 12-25

“Prove the Properties of the Design Model” on page 12-26

“Fix the Verification Model” on page 12-27

When to Use a Verification Model for Property Proving

If your model has system-wide properties that affect the behavior of the model, you might
want to prove the properties without changing the design model. To do this, you create a
verification model that includes:

* Model block that references the design model

* One or more verification subsystems that define the properties and any required
constraints

About this Example

The design model sldvdemo sbr design models the logic for a seat belt reminder light.
If the ignition is turned on, the seat belts are unfastened, and the car exceeds a certain
speed, the seat belt reminder light turns on.

The sldvdemo sbr verification modelis a verification model that defines some
constraints and verifies the properties in the sldvdemo sbr design model. The Model
block in the verification model references the design model, so that the verification logic
exists only in the verification model.

The sldvdemo sbr verification model contains a property that is falsified, because
a constraint is disabled. In the sldvdemo sbl verification fixed model, the
constraint is enabled and all the properties are proven valid.

Understand the Verification Model

Take these steps to understand how the verification model works:

12-25



12 Proving Properties of a Model

12-26

Open the verification model:

sldvdemo_sbr verification

The Design Model block is a Model block that references sldvdemo sbr design.
The SBR Stateflow chart in the design model assumes that the KEY input is initially 0.

Open the Safety Properties subsystem that specifies the properties of the design
model that you want to prove.

This subsystem contains a MATLAB Function block called MATLAB Property. The
code in this block specifies the property that the seat belt reminder should be on
when the ignition is on, the seat belt is not fastened, and the speed is less than 15:

Close the Safety Properties subsystem.
Open the Input Constraints subsystem.

This subsystem defines the following constraints:

* The key can have three positions: 0, 1, 2
* The speed is constrained to fall between 10 and 30.

* The key must start at 0 and can only change by one increment at a time. For
example, the key can change from 0 to 1 or 1 to 2, but not from 0 to 2. In this
verification model, this constraint is not enabled.

Close the Input Constraints subsystem, but keep the sldvdemo sbr verification
model open.

Prove the Properties of the Design Model

Analyze the sldvdemo_sbr verification model to prove the properties:

1

In the sldvdemo_sbr verification model window, to start the analysis, double-
click the Run button to start the analysis.

When the analysis completes, the Simulink Design Verifier log window indicates that
one objective is falsified - needs simulation. For more information, see “Objectives
Falsified - Needs Simulation” on page 13-45.

To see which objective was falsified, click Highlight analysis results on model.

The Safety Properties subsystem is highlighted in orange.


matlab: sldvdemo_sbr_verification

Prove System-Level Properties Using Verification Model

3 Open the Safety Properties subsystem and click the MATLAB Property block.
The Simulink Design Verifier Results window indicates that the statement
sldv.prove(implies(activeCond,SeatBeltIcon))
was false during at least one time step.

'D'i Results: sldvdemo_sbr_verification — O >
~ B#A
Back to summary
sldvdemo_sbr_wverification/Safety Properties/MATLAB
Property
sldv. prove(implies{activ - View counterexample
eCond,SeatBeltIcon))
4

Click View counterexample to see the signal values that violated this property.

The Signal Builder block opens with the counterexample. The KEY input was initially
2, which is invalid.

To validate the property specified in the Safety Properties subsystem, you have to make
sure that the initial value of KEY is 0.

Fix the Verification Model

The Input Constraints subsystem in the verification model contained three constraints.

The third constraint, which requires that the initial value of KEY be 0, and that KEY can
only change in increments of 1, is disabled.

12-27



12 Proving Properties of a Model

fint& 0}, int3(1), it 802 )}

fi{[10 30], fecdt{0,16,2))

[Speed] -

inta{-1 1)

| =

¥

[Key] -

To see how this property is validated when you enable the third constraint:
1 Inthe sldvdemo _sbr verification model, click Open Fixed Model.

The sldvdemo _sbr verification_ fixed verification model opens.

2 Open the Input Constraints subsystem.
This third constraint is now enabled so that KEY has an initial value of 0 and changes
in increments of 1.

3  Close the Input Constraints subsystem.

In the sldvdemo sbr verification fixed model, to start the analysis, double-
click the Run block.

The analysis proves the validity of the property.

12-28



Prove Properties in a Subsystem

Prove Properties in a Subsystem

If you have a large model, you can prove the properties of a subsystem in the model and
review the analyses in smaller, manageable reports. The workflow for proving properties
in a subsystem is:

Open the model that contains the subsystem.

Make the subsystem atomic.

Run Simulink Design Verifier using the Prove Properties of Subsystem option.

A W N -

Review the results.

The tutorial in “Generate Test Cases for a Subsystem” on page 1-26 explains how to
generate test cases for the Controller subsystem in the Cruise Control Test Generation
model. The steps for proving properties are similar to those for generating test cases,
except that you select the Prove Properties of Subsystem option instead of the
Generate Tests for Subsystem option.

12-29



12 Proving Properties of a Model

Model Requirements

12-30

The Simulink Design Verifier block library includes a sublibrary Example Properties. The
Example Properties sublibrary includes:

* “Basic Properties” on page 12-30 — Four examples that demonstrate how to prove
basic properties.

* “Temporal Properties” on page 12-32 — Four examples that demonstrate how to
define temporal properties on Boolean signals

The workflow for using these examples in your model is:

Copy these examples into your Verification Subsystem block.
Adapt them, if required, for the specific properties that you want to prove.

3 Run the Simulink Design Verifier analysis to prove that the assertions in these
examples never fail.

4 [f the assertion fails, the software creates a counterexample that causes the assertion
to fail and then generates a harness model.

5 On the harness model, execute the counterexample to confirm that the assertion fails
with that counterexample.

Basic Properties

To view the Basic Properties examples:
1  Open the Simulink Design Verifier block library. Type:

sldvlib
Double-click the Examples sublibrary.
3 Double-click the Basic Properties block that contains the examples.

The sections that follow describe each example in the Block Properties sublibrary in
detail.

Conditions that Trigger a Result

The Simulink Design Verifier Implies block allows you to test for conditions that trigger a
result. This example specifies that if condition A is true, result B must always be true.



Model Requirements

: A
condition PR @
3
res ult Assertion
Implies

Implies operation describes conditions that should trigger a result.

Increasing or Decreasing Signals
The two examples in this section specify that a signal is either:

* Always increasing or staying constant
» Always decreasing or staying constant

Y

D o 1 >
inoressing z Assertion2
delayi e
-
= [
1 : g @
{8} - -
decreasing z Assertiond
delayd gtel

Increasing and decreasing operations describe signals that
should increase or decrease.

Exclusivity Operation

This example describes four conditions that should not be true at the same time.

12-31



12 Proving Properties of a Model

modes
E_"' Logic: Sumv ched 1

Assertiond

3
iy
=]
5
i

a

g
A

Exclusivity operation descrines conditions that should
ney er be true at same time.

Conditions with One True Element

This example specifies that only one of the four input signals can be true.

==

3

B
h
v

]
¥

¥
]

Ass ertiont

Mutual exclusivity operation describes conditions that should
have exactly one true element.

Temporal Properties

To view the Temporal Properties examples:

12-32



Model Requirements

1 Open the Simulink Design Verifier block library. Type:

sldvlib
Double-click the Temporal Properties sublibrary.
Double-click the Temporal Properties block that contains the examples.

The sections that follow describe each example in the Temporal Properties sublibrary in
detail.

Synchronize the Output with the Input

When the input Inl equals ACTIVE, the input In2 is set to INACTIVE after five time
steps.

Whenewer In1 becomes ACTNE, then In2 shall become INACTNE after a delay of 5 steps.

a——]

4 L—
D = n Out

I > g G e .
5 A

ACTIVE H A=—pBL

In2 L

INACTIVE F

Make a Signal Inactive After a Delay

In this example, after five consecutive time steps where the SENSOR HIGH input is true,
the CMD signal becomes true. CMD is true as long as SENSOR HIGH is true, unless the
block is reset by the MANUAL RESET signal.

12-33



12 Proving Properties of a Model

After Sensor is detected at HIGH for 5 consecutive steps, Cmd becomes and stay s true for
the remaining duraticn of the Sensor wvalue HIGH unless manual reset is detected.

j

BENE{:;{ HIGH Ot
| . rue
l—b-

Y

MAMUAL RESET A==B

D
CMD

Extend a True Signal

In this example, after the input becomes true, the output becomes true for the number of
time steps specified in the Detector block, in this case, 5. The input remains true for 5

time steps as well.

Whenewer In becomes true, it shall stay true for the following 5 steps as well.

1
L5 } -_| L Dl.t-l ’

In A==E

—

Test the Input Against a Specified Threshold

h

When the input In3 equals ON and the input In4 is less than the constant THRESHOLD,
In3 is set to OFF within five time steps.

12-34



Model Requirements

Whenever In3 is ON and Ind is less that THRESHOLD, then In3 shall become OFF within 5§ steps.

Ind
THRESHOLD p © ® D . =
~ - Hammnl Ciul.t—|_> .
OM < i E——
g C:E—“_
In3 |—>
OFF

12-35






Reviewing the Results

« “Highlighted Results on the Model” on page 13-2

* “Simulink Design Verifier Data Files” on page 13-10

* “Simulink Design Verifier Harness Models” on page 13-17
+ “Export Test Cases to Simulink Test” on page 13-25

» “Simulink Design Verifier Reports” on page 13-28

* “Simulink Design Verifier Log Files” on page 13-57

* “Review Analysis Results” on page 13-59



13 Reviewing the Results

Highlighted Results on the Model

13-2

In this section...

“Results Review with Model Highlighting” on page 13-2
“Simulink Design Verifier Results Inspector” on page 13-2
“Highlight Results on Model Automatically” on page 13-2
“Green Highlighting on Model” on page 13-4

“Red Highlighting on Model” on page 13-5

“Orange Highlighting on Model” on page 13-5

“Gray Highlighting on Model” on page 13-8

Results Review with Model Highlighting

When you analyze a model by using Simulink Design Verifier, the analyzed model objects
are automatically highlighted in one of these colors:

* Green

* Red

* Orange

* Gray

You can review the analysis results at a glance by viewing the objects that are highlighted
in the Simulink Editor.

Simulink Design Verifier Results Inspector

When a model is highlighted, you can click an object for which the analysis recorded
results. The Simulink Design Verifier Results Inspector then displays the detailed analysis
results for that object.

Highlight Results on Model Automatically

During analysis, Simulink Design Verifier highlights the model objects automatically when
the objectives status is updated. By default, the automatic highlighting is enabled. To
disable the highlighting, click Disable Highlighting in the Results Summary window.



Highlighted Results on the Model

3'“ nk Design Verifier Results Surmmary: s ermo_cruise_contro
Progress |
Objectives processed 21/32
Satisfied 21
Unsatisfiable 1]
Elapsed time 0:15

27-Jun-2017 16:19:00

Checking compatibility for test generation: model
'sldvdemno_cruise_control'

Compiling model...done

Checking compatibility...done

27-Jun-2017 16:19:01
'sldvdemo_cruise_control' is compatible for test generation
with Simulink Design Verifier.

Generating tests using compatibility results from 27-Jun-2017
16:19:01...

SATISFIED
Controller/Logical Operator
Logic: MCDC (C1 && ~C2) && (C3 || €4) with C1 (Logical

Disable Highlighting Stop

In the Simulink Editor, results highlighting appears on the model. When highlighting is

enabled, the Results Inspector opens displaying the summary of status for analysis

objectives.

13-3



13 Reviewing the Results

'D'i Results: sldvdemo_cruise_control — O >

Test generation in progress.
20/32 objectives are satisfied.
12/32 objectives are in progress.

Results:

* Detailed analysis report: (HTML) (FDF)

Note Simulink Design Verifier does not highlight the Stateflow state transition tables.
The Simulink Design Verifier reports, data files, and log files include the analysis data for

the state transition tables. Using the report, you can navigate to the state transition
tables.

Green Highlighting on Model

Objects that are highlighted in green have the following meaning for each type of
analysis.

Analysis Mode Green highlighting
Design error detection

The analysis did not find overflow or division-by-zero errors.
* The analysis did not find dead logic.

* The analysis did not find intermediate or output signals
outside the range of user-specified minimum and maximum

constraints.
* The analysis did not find out of bound array access errors.
Test generation The analysis found test cases that satisfy the test objectives.
Property proving The analysis found all the proof objectives as valid.

13-4




Highlighted Results on the Model

Red Highlighting on Model

Objects that are highlighted in red have the following meaning, depending on the analysis
type.

Analysis Mode Red highlighting

The analysis found at least one test case that causes
overflow or division-by-zero errors.

Design error detection

* The analysis found dead logic.

* The analysis found intermediate or output signals outside
the range of user-specified minimum and maximum
constraints.

* The analysis found at least one test case that causes an out
of bound array access error.

Test generation The analysis did not satisfy certain test objectives.

Property proving The analysis disproved a proof objective and generated a
counterexample that falsified that objective.

If your model contains at least one object highlighted in red, there might be further
design errors in your model that Simulink Design Verifier does not highlight in red. If an
object in your design causes run-time errors, Simulink Design Verifier might not be able
to determine further errors on objects that are downstream of or rely on the results of the
object that causes the run-time errors. Resolve the errors that cause the initial red
highlighting and rerun the analysis to determine if Simulink Design Verifier highlights
other objects in your model as red.

Orange Highlighting on Model

Objects that are highlighted in orange have the following meaning, depending on the
analysis type.

13-5



13 Reviewing the Results

13-6

Analysis Mode

Orange highlighting

Design error detection

For the highlighted model object,

* The analysis did not decide at least one design error
detection objective. This situation can occur when:

o The analysis is still in progress.
* The analysis times out.

* The analysis cannot decide a design error detection
objective because of division by zero or nonlinear
arithmetic.

* The software cannot decide a design error detection
objective because of stubbing. For more information, see
“Handle Incompatibilities with Automatic Stubbing” on
page 2-8.

* The software cannot decide a design error detection
objective because of limitations of the analysis engine.
For example, if the analysis encounters an unbounded
while loop, it performs an approximation. For more
information, see “Approximations” on page 2-21.

* The analysis found dead logic that approximations can
impact. For more information, see “Reporting
Approximations Through Validation Results” on page 2-25.

* The analysis found valid objectives that approximations can
impact. For more information, see “Reporting
Approximations Through Validation Results” on page 2-25.




Highlighted Results on the Model

Analysis Mode Orange highlighting

Test generation For the highlighted model object,

* The analysis did not decide at least one test objective. This
situation can occur when:

o The analysis is still in progress.
* The analysis times out.

* The analysis cannot decide a test objective because of
division by zero or nonlinear arithmetic.

* The software cannot decide a test objective because of
stubbing. For more information, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-8.

* The software cannot decide a test objective because of
limitations of the analysis engine. For example, if the
analysis encounters an unbounded while loop, it
performs an approximation. For more information, see
“Approximations” on page 2-21.

* The analysis found unsatisfiable objectives that
approximations can impact. For more information, see
“Reporting Approximations Through Validation Results” on
page 2-25.

* The analysis is unable to confirm the satisfied status
through validation results. For more information, see
“Objectives Satisfied - Needs Simulation” on page 13-42.

13-7



13 Reviewing the Results

13-8

Analysis Mode

Orange highlighting

Property proving

For the highlighted model object,

The analysis did not decide at least one proof objective. This
situation can occur when:

o The analysis is still in progress.
* The analysis times out.

* A proof objective exists on a signal whose value the
software cannot control, for example, a Constant block.

* The analysis cannot decide a proof objective because of
division by zero or nonlinear arithmetic.

* The software cannot decide a proof objective because of
stubbing. For more information, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-8.

* The software cannot decide a proof objective because of
limitations of the analysis engine. For example, if the
analysis encounters an unbounded while loop, it
performs an approximation. For more information, see
“Approximations” on page 2-21.

The analysis found valid objectives that approximations can
impact. For more information, see “Reporting
Approximations Through Validation Results” on page 2-25.

The software is unable to confirm the falsified status
through validation results. For more information, see
“Objectives Falsified - Needs Simulation” on page 13-45.

Gray Highlighting on Model

Objects that are highlighted in gray have the following meaning.




Highlighted Results on the Model

Analysis Mode Gray highlighting means...
* Design error The model object was not part of the analysis.
detection

* Test generation
* Property proving

13-9



13 Reviewing the Results

Simulink Design Verifier Data Files

13-10

In this section...

“Data File Generation” on page 13-10

“Contents of sldvData Structure” on page 13-10
“Model Information Fields in sldvData” on page 13-11
“Simulate Models with Data Files” on page 13-16

“Load Results from Data Files” on page 13-16

Data File Generation

Simulink Design Verifier generates a data file when it completes its analysis. The data file
is a MAT-file that contains a structure named sldvData. This structure stores all the data
the software gathers and produces during the analysis. Although the software displays
the same data graphically in the harness model and report, you can use the data file to
conduct your own analysis or to generate a custom report.

By default, the Save test data to file parameter is enabled.

Contents of sldvData Structure

When Simulink Design Verifier completes its analysis, it produces a MAT-file that contains
a structure named sldvData. To explore the contents of the sldvData structure:

1  Generate test cases for the sldvdemo flipflop model:
sldvdemo flipflop;

sldvrun('sldvdemo flipflop');
2 To load the data file, at the MATLAB prompt, enter the following command:

load('sldv output\sldvdemo flipflop\sldvdemo flipflop sldvdata.mat')

The MATLAB software loads the sldvData structure into its workspace. This
structure contains the Simulink Design Verifier analysis results of the
sldvdemo flipflop model.

3 Enter sldvData at the MATLAB command line to display the field names that
constitute the structure:



matlab:sldvdemo_flipflop

Simulink Design Verifier Data Files

sldvData =

ModelInformation: [1x1 struct]
AnalysisInformation: [1x1 struct]
ModelObjects: [1x2 struct]
Constraints: []
Objectives: [1x12 struct]
TestCases: [1x4 struct]
Version: '2.1'

Model Information Fields in sldvData

The following sections describe the fields in the sldvData structure:

“Modellnformation Field” on page 13-11
“AnalysisInformation Field” on page 13-12

“ModelObjects Field” on page 13-12

“Constraints Field” on page 13-13

“Objectives Field” on page 13-13

“TestCases Field / CounterExamples Field” on page 13-14
“Version Field” on page 13-15

Modellnformation Field

In the sldvData structure, the ModelInformation field contains information about the
model you analyzed. The following table describes each subfield of the
ModelInformation field.

Subfield Name Description

Name The model name.

Version The model number.

Author The user name.

TimeStamp The last date and time the model was updated.

SubsystemPath The full path name of the subsystem (if any) that was analyzed.

ExtractedModel The name of the model extracted (if any) to analyze the
subsystem (if any) specified in SubsystemPath.

13-11




13 Reviewing the Results

13-12

Subfield Name

Description

ReplacementModel The name of the model (if any) that contains the block
replacements.
HarnessOwnerModel |The name of the owner model of the Simulink Test test harness

(if any) being analyzed.

Analysisinformation Field

In the sldvData structure, the AnalysisInformation field lists settings of particular
analysis options and related information. The following table describes each subfield of
the AnalysisInformation field.

Subfield Name Description

Status The completion status of the Simulink Design Verifier analysis.

AnalysisTime Double that specifies the length of the analysis in seconds.

Options Deep copy of the Simulink Design Verifier options object used
during the analysis.

InputPortInfo Cell array of structures that specifies information about each
Inport block in the top-level system.

OutputPortInfo Cell array of structures that specifies information about each
Outport block in the top-level system.

SampleTimes For internal use only.

Parameters For internal use only.

AbstractedBlocks For internal use only.

Approximations A structure that describes the approximations performed during
the analysis. For more information about approximations, see
“Approximations” on page 2-21.

ReplacementInfo For internal use only.

ModelObjects Field

In the sldvData structure, the ModelObjects field lists the model items and their
associated objectives. The following table describes each subfield of the Model0bjects

field.




Simulink Design Verifier Data Files

Subfield Name

Description

descr

The full path to a model object, including objects in a Stateflow
chart.

typeDesc The block type of the model object.

slPath The full path to a Simulink model object.

sfObjType The type of a Stateflow object. Example: S for state and T for
transition.

sTObjNum Integer that represents the unique identifier of a Stateflow
object.

sid For internal use only.

designSid For internal use only.

replacementSid For internal use only.

objectives Vector of integers that represents the indices of objectives

associated with a model object.

Constraints Field

In the sldvData structure, the Constraints field lists information about specified
minimum and maximum values (if any) on input ports in your model. The following table
describes the subfield of the Constraints field.

Subfield Name

Description

DesignMinMax

Cell array of structures that include the
name and minimum and maximum values
for each input port for which values are
specified.

Objectives Field

In the sldvData structure, the Objectives field lists information about each objective,
such as its type, status, and description. The following table describes each subfield of the

Objectives field.

Subfield Name

Description

type

The type of an objective.

13-13




13 Reviewing the Results

13-14

Subfield Name Description

status The status of an objective.

descr The description of an objective.

label The label of an objective.

outcomeValue Integer that specifies an objective's outcome.

coveragePointIdx Integer that represents the index of a coverage point with which
an objective is associated.

linkInfo For internal use only.

range For internal use only.

model0bjectIdx Integer that represents the index of a model object with which
an objective is associated.

analysistime Integer that represents the analysis time for an object.

testCaseldx Integer that represents the index of a test case or
counterexample that addresses an objective.

TestCases Field / CounterExamples Field

In the sldvData structure, this field can have two names, depending on the type of

check:

* Ifyou set the Mode parameter to Design error detection, the
CounterExamples field lists information about each test case that results in an
integer overflow or division-by-zero error.

* Ifyou set the Mode parameter to Test generation, the TestCases field lists
information about each test case, such as its signal values and the test objectives it

achieves.

* Ifyou set the Mode parameter to Property proving, the CounterExamples field
lists information about each counterexample and the proof objective it falsifies.

The following table describes each subfield of the TestCases / CounterExamples field.

Subfield Name

Description

timeValues

Vector that specifies the time values associated with signals in a
test case or counterexample.




Simulink Design Verifier Data Files

Subfield Name

Description

dataValues

Cell array that specifies the data values associated with signals
in a test case or counterexample.

paramValues

Structure that specifies the parameter values associated with a
test case or counterexample. Its fields include:

name — The name of a parameter.
value — Number that specifies the value of a parameter.

noEffect — Logical value that specifies whether a parameter's
value affects an objective.

stepValues

Vector that specifies the number of time steps that comprise
signals in a test case or counterexample.

objectives

Structure that specifies objectives that a test case or a
counterexample addresses. Its fields include:

objectiveldx — Integer that represents the index of an
objective that a test case achieves or a counterexample falsifies.

atTime — Time value at which either a test case achieves an
objective or a counterexample falsifies an objective.

atStep — Time step at which either a test case achieves an
objective or a counterexample falsifies an objective.

dataNoEffect

Cell array of logical vectors that specifies whether a signal's
data values affect an objective. The vector uses 1 to indicate
that a signal's data value does not affect an objective; otherwise,
it uses 0.

expectedOutput

Cell array of vectors that specifies the output values that result
from simulating the model using the test case signals. Each cell
represents the output values associated with a different Outport
block in the top-level system. This subfield is populated if you
select Include expected output values.

Version Field

In the sldvData structure, the Version field specifies the version of Simulink Design
Verifier that analyzed the model.

13-15




13 Reviewing the Results

13-16

Simulate Models with Data Files

The sldvruntest function simulates a model using test cases or counterexamples that
reside in a Simulink Design Verifier data file:

1

Simulate the sldvdemo flipflop model and generate test cases:

sldvdemo_ flipflop

Save the location of the data file generated after analyzing the model:

sldvDataFile = 'sldv_output\sldvdemo flipflop\sldvdemo flipflop sldvdata.mat'

Use the sldvruntest function to simulate the sldvdemo flipflop model using
test case 2 in the data file:

[ outdata ] = sldvruntest('sldvdemo flipflop', sldvDataFile, 2)

The output from sldvruntest is an array of Simulink.SimulationOutput
objects.

Examine the output data from the first test case using the methods of the
Simulink.SimulationOutput object:

tout _sldvruntest = outdata(l).find('tout sldvruntest');
xout _sldvruntest = outdata(l).find('xout sldvruntest');
yout sldvruntest = outdata(l).find('yout sldvruntest');

logsout sldvruntest = outdata(l).find('logsout sldvruntest');

Load Results from Data Files

You can load previous analysis results for a model from a data file. For more information,
see “Load Previous Results” on page 13-59 and sldvloadresults.


matlab:sldvdemo_flipflop

Simulink Design Verifier Harness Models

Simulink Design Verifier Harness Models

In this section...

“Harness Model Generation” on page 13-17

“Create a Harness Model” on page 13-17

“Anatomy of a Harness Model” on page 13-18
“Configuration of the Harness Model” on page 13-22
“Simulate the Harness Model” on page 13-23

Harness Model Generation
During or after a Simulink Design Verifier analysis, you can create a harness model.

The contents of the harness model depend on the value of the Mode parameter, set in the
Configuration Parameters dialog box on the Design Verifier pane:

* Design error detection — The harness model contains test cases that result in
errors during simulation.

* Test generation — The harness model contains test cases that achieve test
objectives.

* Property proving — The harness model contains counterexamples that falsify proof
objectives.

By default, the Generate separate harness model after analysis parameter is
disabled.

Note The Simulink Design Verifier software can generate a harness model only when the
top level of the system you are analyzing contains an Inport block.

Create a Harness Model

To create a harness model before or after the analysis, do one of the following:

» Before the analysis, in the Configuration Parameters dialog box, on the Design
Verifier > Results pane, select Generate separate harness model after analysis.

13-17



13 Reviewing the Results

» After the analysis, in the Simulink Design Verifier log window, select Create harness

model.

Anatomy of a Harness Model

The Simulink Design Verifier software produces a harness model that looks like this:

Test Case 1 enzble

1

spesd
Inputs
[
Do
Text

Test Case Explanation

Size-Type

ensble
brake throtb—— (1)
set throt
.
inG
target
der target
L

Test Unit {copied from sidvdemo_ocruise_control)

The harness model contains the following items:

* Inputs — This Signal Builder block contains signals that comprise the test cases or
counterexamples that Simulink Design Verifier generated. The Signal Builder block
contains signals only for input signals that are used in the model. If an input signal has
no effect on the output of the model, that signal is not included in the Signal Builder

block.

Double-click the Inputs block to open the Signal Builder dialog box and view its
signals. Each signal group represents a unique test case or counterexample. In the
Signal Builder dialog box, select a tab to view the signals associated with a particular
test case or counterexample.

The following Signal Builder block shows the signals for Test Case 7 after Simulink
Design Verifier performs test generation analysis on the sldvdemo cruise control

model with the default options.

13-18



Simulink Design Verifier Harness Models

u Signal Builder (sldvderno_cruise_control_harness/Tnputs) * EI@
File Edit Group Signal Axes Help o
FE| R oo | =0 FREE » now | ][R
Active Group: | Test Case 7 g @'| E] E]
e ek
enable H : : : . i
1 i : : : ' i 3
.? | | | | | |
brak : : : :
0 rake . . . .
1 i i i i | I
............... L L ——
set i : : i
R i bbbty 50
| a a a — j
1 - : : : 0 R
inc : . : :
e e i
| — S N S o e I
Ui_ E E E : . .
i i i i | |
1[]9] o R L EEE L LR e e EEEELEECEEEEE:
spee , : . i
I Y RECEECECEEEEEEE T e R LR LR LR R R
O ’ i i i i i
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time (sec)
LLett Pormt Right Paimt
brake {shown)
Hame: enable T: T: zet {shown)
inec {shown)
Index: 1 - L f dec {shown)
’ speed {shown) i

Click to select point or segment, Shift+click to add points

enable (#1) [¥Min ¥Max]

If you select the LongTestcases option of the Test suite optimization parameter,
the analysis creates fewer, longer test cases. For example, if you select the
LongTestcases option for the sldvdemo cruise control model, the analysis
produces one long test case instead of nine shorter test cases. The following Signal
Builder dialog box shows the signals for the long test case.

13-19




13 Reviewing the Results

u Signal Builder (sldvdemo_cruise_control_harness/Tnputs) EI@
File Edit Group Signal Axes Help o
= & B o o = B S IRERE] o0 om | ]| E
Active Group: | Test Case 1 - @, - =
1»—-6--5—»-- &
enable |
0.5—-F--F--F--Ff---+----mmmm o
) S5 U S O SN
hae 1T 1T
rake
05 ------- [- --------
0
1 ; --er--
se |
0.8 - -e- m-
| T :
1 - -- T
inc :
0.5F---------- ki IREREEEEEE
S N S
w—------—------- R RREEEEEEEEE L
s ------f e e ELEELEEEEEEEEEEE
ol ... | -
100 —-------d ----------- S RREREEE
spee |
B R ERREEEL,
0 i
0 0.05
brake {shown)
Hame: enable T e set {shown)
= inc {shown)
Index: 1 - L f dec {shown)
’ speed {shown) i
ok enable (#1) [¥Min ¥Max]

Note For more information about the Signal Builder dialog box, see “Signal Groups”

(Simulink).

13-20




Simulink Design Verifier Harness Models

Size-Type — This Subsystem block transmits signals from the Inputs block to the Test
Unit block. It verifies that the size and data type of the signals are consistent with the
Test Unit block.

Test Unit — This Subsystem block contains a copy of the original model that Simulink
Design Verifier analyzed.

If you select the Reference input model in generated harness on the Design
Verifier > Results pane, the Test Unit is a Model block that references the model you
are analyzing, not a subsystem.

Test Case Explanation — This DocBlock block documents the test cases or
counterexamples that Simulink Design Verifier generates. Double-click the Test Case
Explanation block to view a description of each test case or counterexample. The block
lists either the test objectives that each test case achieves (as in the next graphic) or
the proof objectives that each counterexample falsifies.

13-21



13 Reviewing the Results

[N R AT R O SR

[ T O

Lh L R RN R ORYORY OR3P R ORY R
[ TR |

(X

L
G

34

42
43
44

Test Case 1 (1 Cbjectives)
Parameter wvalues:

1. Controller/Switch2 - logical trigger input false (output i= from 3rd input port) @ T=0.00

Test Case 2 (3 Cbhbjectives)
Parameter values:

1. Controller/Logical Cperator - Logic: input port 1 F @ T=0.00
2. Controller/Logical Operator - Logic: MCDC expression for output withl input port 1 F @ T=0.00
3

Controller/PI Controller - enable logical value F @ T=0.00

Test Case 3 (3 Cbjectives)
Parameter values:

1. Controller/Logical Operatorl - Logic: input port 1 T @ T=0.00
2. Controller/Logical Cperator - Logic: input port 2 F @ T=0.00
3

Controller/Logical Operator - Logic: MCDC expression for output with input port 2 F @ T=0.00

Test Case 4 (1 Cbjectives)
Parameter wvalues:

1. Controller/Switch3 - logical trigger input true (output is from 1st input port) @ T=0.00

Test Case 5 (7 Cbhbjectives)
Parameter values:

Controller/Logical Operator - Logic: input port 3 F @ T=0.00

1. Controller/Switchl - logical trigger input false (output is from 3rd input port) @ T=0.00

2. Controller/Logical OperatorZ - Logic: input port 1 F @ T=0.00

3. Controller/Logical OperatorZ - Logic: input port 2 F @ T=0.00

4. Controller/Logical Cperator2 - Logic: MCDC expression for output with input port 1 F @ T=0.00
5. Controller/Logical Cperator2 - Logic: MCDC expression for output with input port 2 F @ T=0.00
6.

7.

Controller/Logical Operator - Logic: MCDC expression for output with input port 3 F @ T=0.00

Test Case & (2 Cbjectives)
Parameter wvalues:

1. Controller/Logical Cperator2 - Logic: input port 2 T @ T=0.01

2. Controller/Logical Cperator2 - Logic: MCDC expression for output with input port 2 T @ T=0.01

Test Case 7 (1 Cbjectives)
Parameter values:

m

13-22

Configuration of the Harness Model
After Simulink Design Verifier generates the harness model, it has the following settings:

* The harness model start time is always 0. If the original model uses a nonzero start
time, the software ignores this and uses 0 for the simulation start time for test cases
and counterexamples.

* The harness model stop time always equals the stop time of the longest test case in
the Signal Builder dialog box.




Simulink Design Verifier Harness Models

By default, the software enables coverage reporting for harness models that contain
test cases. Although it enables coverage reporting with particular options selected,
you can customize the settings to meet your needs. For more information, see “Specify
Coverage Options” (Simulink Coverage).

By default, if you select Ignore objective based on filter and provide a coverage
filter file for the Test Unit, the coverage filter file also applies to the harness model.
The coverage objective filter parameters are in the Configuration Parameters dialog
box, on the Test Generation pane.

Simulate the Harness Model

The harness model enables you to simulate a copy of your original model using the test
cases or counterexamples that Simulink Design Verifier generates. Using the harness
model, you can simulate:

A counterexample

A single test case, for which the Simulink Coverage software collects and displays
model coverage information

All test cases, for which the Simulink Coverage software collects and displays
cumulative model coverage information

Note If you analyze a model that simulates with sample time warnings, when you
simulate the harness model, the warnings may be reported as errors, causing the
simulation to fail.

To simulate a single test case or counterexample:

1

In the harness model, double-click the Inputs block.

The Signal Builder dialog box appears.

In the Signal Builder dialog box, select the tab associated with a particular test case
or counterexample.

The Signal Builder dialog box displays the signals that comprise the selected test
case or counterexample.

In the Signal Builder dialog box, click the Start simulation button ﬂ

13-23



13 Reviewing the Results

13-24

The Simulink software simulates the harness model using the signals associated with
the selected test case or counterexample. When simulating a test case, the Simulink
Coverage software collects model coverage information and displays a coverage
report.

To simulate all test cases and measure their combined model coverage:

1

In the harness model, double-click the Inputs block.

The Signal Builder dialog box appears.

all
In the Signal Builder dialog box, click the Run all button =

The Simulink software simulates the harness model using all test cases, while the
Simulink Coverage software collects model coverage information and displays a
coverage report.

When you click Run all, the software simulates all the test cases using the stop time
for the harness model. The stop time equals the stop time for the longest test case, so
you may accumulate additional coverage when you simulate the shorter test cases.

If the Test Unit in the harness model is a subsystem, the values of parameters on the
Optimization and Math and Data Types panes may impact your coverage results.

See “Simulating with Signal Groups” (Simulink) for more information about simulating
models containing Signal Builder blocks.



Export Test Cases to Simulink Test

Export Test Cases to Simulink Test

In this section...

“Overall Workflow” on page 13-25

“Test Case Generation Example” on page 13-25

Model verification often requires repeated testing to achieve certain objectives or
coverage criteria. If you run repeated tests, consider using the Test Manager in Simulink
Test to structure your test cases, archive test results, and generate reports. You can
generate test cases using Simulink Design Verifier and export the test inputs to new test
cases automatically created in the Simulink Test Manager.

Overall Workflow

Exporting generated inputs to new test cases in Simulink Test follows this workflow.

1 Choose an existing Simulink Design Verifier results file, or generate new results by
analyzing your model.

» Ifyou use an existing results file, you can load results by either:

* Using the Simulink Test command sltest.import.sldvData.

* Using Simulink Design Verifier menu items. In the model, select Analysis >
Design Verifier > Results > Load. Select the MAT file with the analysis
results.

* Ifyou run a model analysis, the Design Verifier Results Summary window appears
after the analysis completes.

In the results summary window, click Export test cases to Simulink Test.
Select an existing test harness, or create a test harness.

Simulink Test generates the test file and test harness. In the Test Manager, expand
the new test file in the Test Browser to see the individual test cases.

Test Case Generation Example
This example shows how to generate test cases to achieve coverage objectives for a

controller subsystem. It also shows how to add functional test cases from test harnesses
in the model. The example requires a Simulink Test license.

13-25



13 Reviewing the Results

The model is a closed-loop heatpump system. The controller accepts the measured room
temperature and set temperature inputs. The controller outputs a bus of three signals
controlling the fan, heat pump, and the direction of the heat pump (heat or cool). The
model contains a harness that tests heating and cooling scenarios.

1 Open the model.

open_system(fullfile(docroot, 'toolbox', 'sltest’', 'examples’,...
'sltestTestCaseFromDVExample.slx'));
Set the current working folder to a writable folder.

In the model, generate tests for the Controller subsystem. Right-click the Controller
block and select Design Verifier > Generate Tests for Subsystem.

4 In the Results Summary window, click Export test cases to Simulink Test.
In the Harness Selection dialog box, select New Harness. Click OK.

The Test Manager displays six new test cases in the test file.

MG Fesults and Artifacts |=| New Test Case 1 m\ Start Page

* ITERATIONS*®

= =] TestFile_GeneratedTests
~TAELE ITERATIONS

= MNew Test Suite 1
[E] Mew TestCase 1 7| HALE IGNAL BUILDER GROUP  PARAMETER SET EXTERNAL INPUT LOGGED 5IGNAL SET +
« TestCasel TestCasel
+|TestCase 2 TestCase 2
« TestCase 3 TestCase 3
+|TestCase 4 TestCase 4
«|Test Case 5 TestCase 5
+|TestCase 6 Test Case @

Auto Generate & J2EE T Delete -

6 Click the harness badge to preview the new test harness.

13-26



See Also

Im
conirol_out

Troom_in

Contraoller
Requirement2

Internal Test

conbral_in

Toutside

Troom

TestHarmess1

Harnesses

Open test harness|

7  Add a test case to the other test harness in the model. In the Test Manager, hover

over the new test file name and click the Synchronize Test File button =

8 The Test Manager prompts you to add tests for the Requirement?2 test harness. Select

Simulation for the test type, and click Update Test File.

The Test Manager adds the Requirement?2 test case to the test file.

See Also
sltest.import.sldvData

13-27



13 Reviewing the Results

Simulink Design Verifier Reports

13-28

In this section...

“Simulink Design Verifier Report Generation” on page 13-28
“Create Analysis Reports” on page 13-28

“Front Matter” on page 13-29

“Summary Chapter” on page 13-29

“Analysis Information Chapter” on page 13-29

“Derived Ranges Chapter” on page 13-34

“Objectives Status Chapters” on page 13-35

“Model Items Chapter” on page 13-48

“Design Errors Chapter” on page 13-49

“Test Cases Chapter” on page 13-50

“Properties Chapter” on page 13-55

Simulink Design Verifier Report Generation

After an analysis, Simulink Design Verifier can generate an HTML report that contains
detailed information about the analysis results.

The analysis report contains hyperlinks that allow you to:

* Navigate to a specific part of the report
* Navigate to the object in your Simulink model for which the analysis recorded results

You can also generate an additional PDF version of the Simulink Design Verifier report.

Create Analysis Reports

To create a detailed analysis report before or after the analysis, do one of the following:

» Before the analysis, in the Configuration Parameters dialog box, on the Design
Verifier > Report pane, select Generate report of the results. If you want to save
an additional PDF version of the Simulink Design Verifier report, select Generate
additional report in PDF format.




Simulink Design Verifier Reports

* After the analysis, in the Simulink Design Verifier log window, you can choose HTML
or PDF format and Generate detailed analysis report.

Front Matter

The report begins with two sections:

» “Title” on page 13-29
» “Table of Contents” on page 13-29

Title
The title section lists the following information:

* Model or subsystem name Simulink Design Verifier analyzed
» User name associated with the current MATLAB session
* Date and time that Simulink Design Verifier generated the report

Table of Contents

The table of contents follows the title section. Clicking items in the table of contents
allows you to navigate quickly to particular chapters in the report.

Summary Chapter

The Summary chapter of the report lists the following information:

* Name of the model

* Analysis mode

* Analysis status

* Status of objectives analyzed

Analysis Information Chapter

The Analysis Information chapter of the report includes the following sections:

* “Model Information” on page 13-30
* “Analysis Options” on page 13-30

13-29



13 Reviewing the Results

13-30

* “Unsupported Blocks” on page 13-31

* “Constraints” on page 13-32

* “Block Replacements Summary” on page 13-32
* “Approximations” on page 13-33

Model Information

The Model Information section provides the following information about the current
version of the model:

* Path and file name of the model that Simulink Design Verifier analyzed

* Model version

* Date and time that the model was last saved

* Name of the person who last saved the model

Analysis Options

The Analysis Options section provides information about the Simulink Design Verifier
analysis settings.

The Analysis Options section lists the parameters that affected the Simulink Design
Verifier analysis. If you enabled coverage filtering, the name of the filter file is included in
this section.



Simulink Design Verifier Reports

Analysis Options

Mode:

Test Suite Optimization:
Maximum Testcase Steps:
Test Conditions:

Test Objectives:

Model Coverage Objectives:
Maximum Analysis Time:
Block Replacement:

Block Replacement Rules:
Parameters Analysis:
Parameters Configuration File:
Save Data:

Save Harness:

Save Report:

TestGeneration
CombinedObjectives
500 time steps
UseLocalSettings
UseLocalSettings
MCDC

60s

on
<FactoryDefaultRules>
on

sldv_params template.m
on

on

on

Note For more information about these parameters, see “Simulink Design Verifier

Options” on page 15-2.

Unsupported Blocks

If your model includes unsupported blocks, by default, automatic stubbing is enabled to
allow the analysis to proceed. With automatic stubbing enabled, the software considers
only the interface of the unsupported blocks, not their actual behavior. This technique
allows the software to complete the analysis. However, the analysis may achieve only
partial results if any of the unsupported model blocks affect the simulation outcome.

The Unsupported Blocks section appears only if the analysis stubbed unsupported blocks;
it lists the unsupported blocks in a table, with a hyperlink to each block in the model.

13-31



13 Reviewing the Results

Unsupported Blocks

The following blocks are not supported by Simulink Design Verifier. They were abstracted during the
analysis. This can lead Simulink Design Verifier to produce only partial results for parts of the model that
depends on the output values of these blocks.

Block Type
Discrete State-Space DiscreteStateSpace

For more information about automatic stubbing, see “Handle Incompatibilities with
Automatic Stubbing” on page 2-8.

Constraints

The Constraints section provides information about test conditions that Simulink Design
Verifier applied when it analyzed a model.

Constraints

Analysis Constraints

Name Analysis Constraint
constraint [0, 100]

You can navigate to the constraint in your model by clicking the hyperlink in the
Constraints table. The software highlights the corresponding Test Condition block in your
model window and opens a new window showing the block in detail.

Block Replacements Summary

The Block Replacements Summary provides an overview of the block replacements that

Simulink Design Verifier executed. It appears only if Simulink Design Verifier replaced
blocks in a model.

Each row of the table corresponds to a particular block replacement rule that Simulink
Design Verifier applied to the model. The table lists the following:

13-32



Simulink Design Verifier Reports

* Name of the file that contains the block replacement rule and the value of the
BlockType parameter the rule specifies

* Description of the rule that the MaskDescription parameter of the replacement
block specifies

* Names of blocks that Simulink Design Verifier replaced in the model

To locate a particular block replacement in your model, click on the name for that
replacement in the Replaced Blocks column of the table; the software highlights the

affected block in your model window and opens a new window that displays the block in
detail.

Block Replacements Summary

Table 2.1. Block Replacements

#: Replacement Rule / Block Type Rule Description Replaced Blocks
Inserts test objectives for
switch blocks that require | gyiteh

1  |blkrep rule switch normal /Switch each switch position be Switch2

demonstrated when the :
values of input ports 1 and Switch3
3 differ.

Approximations

Each row of the Approximations table describes a specific type of approximation that
Simulink Design Verifier used during its analysis of the model.

Approximations

Simulink Design Verifier performed the following approximations during analysis. These can impact the

precision of the results generated by Simulink Design Verifier. Please see the product documentation for
further details.

# Type Description

The model includes floating-point arithmetic. Simulink Design Verifier

1 Rational approximation approximates floating-point arithmetic with rational number arithmetic.

13-33



13 Reviewing the Results

13-34

Note Review the analysis results carefully when the software uses approximations. In
rare cases, an approximation may result in test cases that fail to achieve test objectives or
counterexamples that fail to falsify proof objectives. For example, a floating-point round-
off error might prevent a signal from exceeding a designated threshold value.

Derived Ranges Chapter

In a design error detection analysis, the analysis calculates the derived ranges of the
signal values for the Outports for each block in the model. This information can help you
identify the source of data overflow or division-by-zero errors.

The table in the Derived Ranges chapter of the analysis report lists these bounds.



Simulink Design Verifier Reports

Chapter 3. Derived Ranges

Signal

Controller/Constantl- outport 1
Controller/Unit Delay- outport 1
Controller/Sum- outport 1
Controller/Constant3- outport 1
Controller/Sum2- outport 1

Controller/Switch3/Switch. Defined by block replacement rle
"blkrep rule switch normal'.- outport 1

Controller/Switch2/Switch. Defined by block replacement rule
‘blkrep rule switch normal'.- outport 1

Controller/Switchl/Switch. Defined by block replacement rule
‘blkrep rule switch normal'.- outport 1

Controller/Sum1- outport 1
Controller/Logical Operatorl- outport 1
Controller/Unit Delav1- outport 1
Controller/Logical Operator2- outport 1
Controller/Logical Operator- outport 1

throt- outport 1

target- outport 1

Objectives Status Chapters

Derived Ranges

1

[-Inf..Inf]
[-Inf..Inf]
1
[
[

-Inf..Inf]
-Inf..Inf]

[-Inf..Inf]

[-Inf..Inf]

[-Inf..Inf]

[F..T]

[F..T]

[F..T]

[F..T]

.'[3.59 54e+306..3.5954e+306]
[-Inf..Inf]

This section of the report provides information about all the objectives in a model,
including the type of the objective, the model item that corresponds to the type, and

objective description.

* “Design Error Detection Objectives Status” on page 13-38

» “Test Objectives Status” on page 13-41

13-35



13 Reviewing the Results

13-36

* “Proof Objectives Status” on page 13-44

* “Objectives Undecided due to Runtime Error” on page 13-46

* “Objectives Undecided Due to Division by Zero” on page 13-46

*  “Objectives Undecided Due to Nonlinearities” on page 13-46

* “Objectives Undecided Due to Stubbing” on page 13-47

* “Objectives Undecided Due to Array Out of Bounds” on page 13-47

* “Objectives Undecided” on page 13-47

The software identifies the presence of approximations and reports them at the level of
each objective status. For more information, see “Reporting Approximations Through
Validation Results” on page 2-25. This table summarizes the objective status for Simulink
Design Verifier analysis modes.

Analysis Mode

Objective Status

Design error detection

“Dead Logic” on page 13-38

“Dead Logic under Approximation” on page 13-39
“Active Logic - Needs Simulation” on page 13-39
“Objectives Valid” on page 13-40

“Objectives Valid under Approximation” on page 13-40
“Objectives Falsified - Needs Simulation” on page 13-41

“Objectives Undecided Due to Division by Zero” on page 13-
46

“Objectives Undecided Due to Nonlinearities” on page 13-
46

“Objectives Undecided Due to Stubbing” on page 13-47
“Objectives Undecided” on page 13-47

“Objectives Undecided Due to Array Out of Bounds” on page
13-47




Simulink Design Verifier Reports

Analysis Mode

Objective Status

Test generation

“Objectives Satisfied” on page 13-41
“Objectives Satisfied - Needs Simulation” on page 13-42
“Objectives Unsatisfiable” on page 13-42

“Objectives Unsatisfiable under Approximation” on page 13-
43

“Objectives Undecided with Testcases” on page 13-43

“Objectives Undecided due to Runtime Error” on page 13-
46

“Objectives Undecided Due to Division by Zero” on page 13-
46

“Objectives Undecided Due to Nonlinearities” on page 13-
46

“Objectives Undecided Due to Stubbing” on page 13-47
“Objectives Undecided” on page 13-47

“Objectives Undecided Due to Array Out of Bounds” on page
13-47

13-37



13 Reviewing the Results

13-38

Analysis Mode

Objective Status

Property proving

“Objectives Valid” on page 13-44

“Objectives Valid under Approximation” on page 13-44
“Objectives Falsified with Counterexamples” on page 13-45
“Objectives Falsified - Needs Simulation” on page 13-45

“Objectives Undecided with Counterexamples” on page 13-
45

“Objectives Undecided due to Runtime Error” on page 13-
46

“Objectives Undecided Due to Division by Zero” on page 13-
46

“Objectives Undecided Due to Nonlinearities” on page 13-
46

“Objectives Undecided Due to Stubbing” on page 13-47
“Objectives Undecided” on page 13-47

“Objectives Undecided Due to Array Out of Bounds” on page
13-47

Design Error Detection Objectives Status

If you run a design error detection analysis, the Design Error Detection Objectives
Status section can include the following objective statuses:

* “Dead Logic” on page 13-38

* “Dead Logic under Approximation” on page 13-39

* “Active Logic - Needs Simulation” on page 13-39

* “Objectives Valid” on page 13-40

* “Objectives Valid under Approximation” on page 13-40

* “Objectives Falsified - Needs Simulation” on page 13-41

Dead Logic

The Dead Logic section lists the model items for which the analysis found dead logic.

This image shows the Dead Logic section of the generated analysis report for the
sldvdemo fuelsys logic simple model.




Simulink Design Verifier Reports

Dead Logic

Simulink Design Verifier found that these decision and condition outcomes cannot occur and are dead-logic in the model. Dead-logic in
the model can also be a side-effect of parameter configurations or mput specified minimum maximum constraints.

, - [Analysis
& |Type Model Ttem Description Timme (sac) | Tt Case
17 |condition |centrollogic Speed_Sensor Mode Transition: Condition 2. "press 16 /e
[speed==0 & press = zero fh.." zero_thresh” F
control
86  [Decision |logic Fueling Mode Fuel Disabled " Transition: Transition trigger expressionF |16 ln/a
|[in(Sens_Failure_Counter Mu_"

Dead Logic under Approximation

The Dead Logic under Approximation section lists the model items for which the
analysis found dead logic under the impact of approximation.

In releases before R2017b, this section can include objectives that were marked as Dead
Logic.

This image shows the Dead Logic under Approximation section of the generated
analysis report.

Dead Logic under Approximation

Simulink Destgn Verifier found that these decision and condition outcomes cannot occur and are dead-logic in the model
under the impact of approximations during analysis. Dead-logic in the model can also be a side-effect of parameter
configurations or input specified minimum maximum constraints. or m rare cases. the approximations performend by
Simulink Design Verifer

|Analysis

& [Type |XInﬂElIlﬂn Description Time (oec) |75t Case
2 |Condition |emiblockl Script. isequalALALeq) F 13 [0

Active Logic - Needs Simulation

The Active Logic - Needs Simulation section lists the model items for which the
analysis found active logic. To confirm the active logic status, you must run additional
simulations of test cases.

In releases before R2017b, this section can include objectives that were marked as Active
Logic.

This image shows a portion of the Active Logic - Needs Simulation section of the
generated analysis report for the sldvdemo fuelsys logic simple model.

13-39



13 Reviewing the Results

13-40

Active Logic - Needs Simulation

Simulink Destgn Verifier found that these decision and condition outcomes can occur and are active logic i the model
However, further simulation is needed to confirm the Active logic status.

|Analysis Test
# [Type Model Item Description Time Casel
(sec)
State: Substate executed State <
3 [Decision |control logic Oxvgen Sensor Mode n, " 22 5
02_fail
State: Substate executed State
|4 |Decision |control logic. Oxvgen_Sensor_Mode n, B 22 1L
'02_normal
< State: Substate executed State
5 [Decision [control logic Oxvgen Sensor Mode 00 " 21 1L
'02_warmup
State: Substate executed State
6 [Decision [control logic Pressure_Sensor Mode n " 22 1L
press_fail’
State: Substate executed State
7 |Deciston |control logic Pressure_Sensor_Mode n " 21 1L
‘press_norm’
control logic Oxvgen Sensor_Mode "[Ego = Transition: Transition trigger -
s [Decision - 22 22 s
jmax_ego] / Sens_Fail... expression F

Objectives Valid

The Objectives Valid section lists the design error detection objectives that the analysis
found valid. For these objectives, the analysis determined that the described design
erTors cannot occur.

In releases before R2017b, this section can include objectives that were marked as
Proven Valid.

This image shows the Objectives Valid section of the generated analysis report for the
sldvdemo design error detection model.

Objectives Valid
4 |Type  [Model Item [Description Analvsis g Cage
: A Time (sec)
5 [Overflow |ControllerSum Overflow, s v
15 loverfion |Cantzoller BT Controller Discrete: | A .
Time Tutegrator

31 |Overflow |ControllerPT ContralierKp Gverfiow B v

31 [Overflow |ControllerPI ControllerKpl Overflow, s v

37 [Overflow |Controller/PI Controller/Sum __ [Overflow B v

Objectives Valid under Approximation

The Objectives Valid under Approximation section lists the design error detection
objectives that the analysis found valid under the impact of approximation.

In releases before R2017b, this section can include objectives that were marked as
Proven Valid.

This image shows the Objectives Valid under Approximation section of the generated
analysis report.



Simulink Design Verifier Reports

Objectives Valid under Approximation

[Analysis

#  [Type Model Item Description Time (sec)

Test Case

[Division by
R IDivide [Division by zero 140 n'a

Objectives Falsified - Needs Simulation

The Objectives Falsified - Needs Simulation section lists the design error detection
objectives for which the analysis found test cases that demonstrate design errors. To
confirm the falsified status, you must run additional simulations of test cases.

In releases before R2017b, this section can include objectives that were marked as
Falsified.

This image shows the Objectives Falsified - Needs Simulation section of the generated
analysis report for the sldvdemo _design error detection model.

Objectives Falsified - Needs Simulation

[Analysis

& |Type  [ModelItem Description Time  [Test Case
(5e0)

6 [Overflow |Controller/Sum? Overflow 20

11 |Overflow [Controller Suml Overflow 20 L

Test Objectives Status

If you run a test case generation analysis, the Test Objectives Status section can include
the following objective statuses:

* “Objectives Satisfied” on page 13-41

* “Objectives Satisfied - Needs Simulation” on page 13-42

* “Objectives Unsatisfiable” on page 13-42

* “Objectives Unsatisfiable under Approximation” on page 13-43

* “Objectives Undecided with Testcases” on page 13-43

Objectives Satisfied

The Objectives Satisfied section lists the test objectives that the analysis satisfied. The
generated test cases cover the objectives.

This image shows a portion of the Objectives Satisfied section of the generated analysis
report for the sldvdemo fuelsys logic simple example model.

13-41



13 Reviewing the Results

13-42

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

[Analysis |Test

4 [type  |ModelItem Description S e
1 IDecision control logic. Oxygen_Sensor_Mode State: Substate executed State "O2_fail” (97 35
> [Decision |control logic Oxveen Sensor Mode State: Substare exccuted State 04 31

"O2_normal”

. State: Substate executed State
3 [Decision  |control logic Oxveen Sensor Made [ . 72
02_warmup!

. State: Substate executed State
4 [Decision  |control logic Pressure_Sensor_Mode " press. fail 79

=]

. State: Substate executed State
[Decision  |control logic Pressure_Sensor_Mode N - 72
press_norm

Objectives Satisfied - Needs Simulation

The Objectives Satisfied - Needs Simulation section lists the test objectives that the
analysis satisfied. To confirm the satisfied status, you must run additional simulations of
test cases.

In releases before R2017b, this section can include objectives that were marked as
Satisfied.

This image shows the Objectives Satisfied - Needs Simulation section of the generated
analysis report.

Objectives Satisfied - Needs Simulation

Simulink Design Verifier found test cases that exercise these test objectives. However. further simulation is needed to confirm the
Satisfied status.

[Analysis

#  [Type |)Inﬂel]tem Description Time ooy | TE5t Case
1 |Decision  |Simulink Funcrion [Function call executed 11 N

Objectives Unsatisfiable

The Objectives Unsatisfiable section lists the test objectives that the analysis
determined could not be satisfied.

In releases before R2017b, this section can include objectives that were marked as
Proven Unsatisfiable.

This image shows the Objectives Unsatisfiable section of the generated analysis report
for the sldvdemo fuelsys logic simple example model.



Simulink Design Verifier Reports

Objectives Unsatisfiable

Simulink Design Verifier found that there does not exist any test case exercising these test objectives. This often indicates the presence of
dead-logic in the model. Other possible reasons can be inactive blocks in the model due to parameter configuration or test constraints such
as given using Test Condition blocks

- [Aualysis
s [Type Model Trem Description e ey [Test Case
y conirol logic Speed Semor Mode Tramsition: Condition 2. "press
61 |Condition | 04—0 & press = zero_th " rero_thresh” F 13 i
‘ Tramsifion: MCDC Transition trigger
control logic Speed_Sensor Mode ‘ nee
57 |Mcpe Logic Spesd Sensor Mo expression with Condition 2. "press < [13 o/
[speed=—0 & press = zero_th espression vl
control
106 [Decision  |logic Fueling Mode Fucl Disabled”  |Transition: Transition trigger expression F |13 o/a
[in(Sens_Failure_Counter Mu._"

Objectives Unsatisfiable under Approximation

The Objectives Unsatisfiable under Approximation section lists the test objectives
that the analysis determined could not be satisfied due to approximation during analysis.

In releases before R2017b, this section can include objectives that were marked as
Proven Unsatisfiable.

This image shows the Objectives Unsatisfiable under Approximation section of the
generated analysis report.

Objectives Unsatisfiable under Approximation

Simulink Destgn Venfier found that there does not exist any test case exercising these test objectives under the impact of
approximations during analysis. This often indicates the presence of dead-logic in the model. Other possible reasons can be
inactive blocks in the model due to parameter configuration or test constraints such as given using Test Condition blocks. In
rare cases, the approximations performed by Simulink Design Verifier can make objectives impossible to achieve.

- [Analysis
& [Type Model Ttem Description Time (secy |TeSt Case
Decision  |Chast_WithLengthGuard Box B State. Mloc F 21 na

Objectives Undecided with Testcases

The Objectives Undecided with Testcases section lists the test objectives that are
undecided due to the impact of approximation during analysis.

In releases before R2017b, this section can include objectives that were marked as
Satisfied.

This image shows the Objectives Undecided with Testcases section of the generated
analysis report for the sldvApproximationsExample example model.

Objectives Undecided with Testcases

Simulink Design Verifier was not able to decide these objectives due to the impact of approximations during analysis

. Analysis
4 |Type Model Item Description Time (s0c) [Tt Ca5
1 Decision  |Switch logical trigger input false (output is 14 b
— from 3rd mput port)

13-43



13 Reviewing the Results

13-44

Proof Objectives Status

If you run a property-proving analysis, the Proof Objectives Status section can include:

* “Objectives Valid” on page 13-44

* “Objectives Valid under Approximation” on page 13-44

* “Objectives Falsified with Counterexamples” on page 13-45

* “Objectives Falsified - Needs Simulation” on page 13-45

* “Objectives Undecided with Counterexamples” on page 13-45

Objectives Valid

The Objectives Valid section lists the proof objectives that the analysis found valid.

In releases before R2017b, this section can include objectives that were marked as
Proven Valid.

This image shows the Objectives Valid section of the generated analysis report for the
sldvdemo debounce validprop example model.

Objectives Valid

— Analysis |
s Type Model Ttem Description analysis Counterexample
| [Proof Verify OutputFourCorrect Objective: T 16 wa
objective
p  [Proof Verify Output TourCorrect Objective: T 17 wa
objective

Objectives Valid under Approximation

The Objectives Valid under Approximation section lists the proof objectives that the
analysis found valid under the impact of approximation.

In releases before R2017b, this section can include objectives that were marked as
Objectives Proven Valid.

This image shows the Objectives Valid under Approximation section of the generated
analysis report.

Objectives Valid under Approximation

[Analysis

& [Type Model Item Description Time (sec)

Counterexample

1 [Proof IMATLAB Function sldv prove(x=0) o
objective




Simulink Design Verifier Reports

Objectives Falsified with Counterexamples

The Objectives Falsified with Counterexamples section lists the proof objectives that
the analysis disproved. The generated counterexample shows the violation of the proof
objective.

This image shows the Objectives Falsified with Counterexamples section of the
generated analysis report for the sldvdemo debounce falseprop example model.

Objectives Falsified with Counterexamples

Analysis

% Type Model Ttem Description Time (se) |Counterexample
1 |Assent Verify True Output/Assertion Assert 1 1

Objectives Falsified - Needs Simulation

The Objectives Falsified - Needs Simulation section lists the proof objectives that the
analysis disproved. To confirm the falsified status, you must run additional simulations of
counterexamples.

In releases before R2017b, this section can include objectives that were marked as
Objectives Falsified with Counterexamples.

This image shows the Objectives Falsified - Needs Simulation section of the generated
analysis report.

Objectives Falsified - Needs Simulation

[Analysis

& [Type  |Model tem Description )| Counterexample

1 [Proof Safety Properties MATLAB

rove(i o N
sbective |Propors sidv prove(implies(activeCond SeatBeltlcon)) |12 1

Objectives Undecided with Counterexamples

The Objectives Undecided with Counterexamples section lists the proof objectives
undecided due to the impact of approximation during analysis.

In releases before R2017b, this section can include objectives that were marked as
Falsified.

This image shows the Objectives Undecided with Counterexamples section of the
generated analysis report.

13-45



13 Reviewing the Results

13-46

Objectives Undecided with Counterexamples

— nalysis o
s [Type Model Ttem Description ok [Counterexample
1 [Proof oo Objective Objective: [1.2] 1 L
objective

Objectives Undecided due to Runtime Error

For proof objectives and test objectives, the Objectives Undecided due to Runtime
Error section lists the undecided objectives during analysis due to a run-time error. The
run-time error occurred during simulation of a test case or counterexample.

In releases before R2017b, this section can include objectives that were marked as
Falsified or Satisfied.

This image shows the Objectives Undecided due to Runtime Error section of the
generated analysis report.

Objectives Undecided due to Runtime Error

Simulink Design Verifier was not able to decide these objectives due to runtime errors that occured during simulation of the
test cases

Analysis

Time (sec) Test Case

4 |Type Model Item Description

[RelationalOperator: inputl == input2

1 Condition  [Relational Operator 13 1

Objectives Undecided Due to Division by Zero

For all types of objectives, the Objectives Undecided Due to Division by Zero section
lists the undecided objectives during analysis due to division-by-zero errors in the
associated model items. To detect division-by-zero errors before running further analysis
on your model, follow the procedure in “Detect Integer Overflow and Division-by-Zero
Errors” on page 6-24.

Objectives Undecided Due to Division by Zero
Simulink Design Verifier was not able to decide these objectives due to division by zero errors in the model

Analysis

#  Type Model Item Description Time (sey  Test Case
1 |Decision Saturation finput > lower lmit F 0 na
2 |Decision Saturation imput > lower lmit T 0 na
3 |Decision Saturation input = upper limit F 0 na
4 Decision Saturation finput >=upper fimit T 0 n/a

Objectives Undecided Due to Nonlinearities

For all types of objectives, the Objectives Undecided Due to Nonlinearities section
lists the undecided objectives during analysis due to required computation of nonlinear



Simulink Design Verifier Reports

arithmetic. Simulink Design Verifier does not support nonlinear arithmetic or nonlinear
logic.

Objectives Undecided Due to Nonlinearities

Simulink Design Verifier was not able to decide these objectives due to the presence of nonlinear arithmetic in the model.

. Analysis

#  Type Model Item Description Time (o) | Te5t Case
30  |Decision  |BasicRolMode Integrator integration result <= lower it T |2 la

32 |Decision  [BasicRolMode/Inteerator integration result >=upper mit T |2 nla

Objectives Undecided Due to Stubbing

For all types of objectives, the Objectives Undecided Due to Stubbing section lists
model items with undecided objectives during analysis due to stubbing. In releases before
R2013b, these objectives can include objectives that were marked as Objectives
Satisfied - No Test Case or Objectives Falsified - No Counterexample.

Objectives Undecided Due to Stubbing

Simulink Design Verifier was not able to decide these objectives due to stubbing.

Type Model Item Description Analysis Time

# (sec)
2 Decision Saturation input > lower limit F 12
3 Decision Saturation input > lower limit T 12
4 Decision Saturation input >= upper limit F 12
5 Decision Saturation input >= upper lmit T 12

Objectives Undecided Due to Array Out of Bounds

For all types of objectives, the Objectives Undecided Due to Array Out of Bounds
section lists the undecided objectives during analysis due to array out of bounds errors in
the associated model items. To detect out of bounds array errors in your model, see
“Detect Out of Bound Array Access Errors” on page 6-36.

Objectives Undecided Due to Array Out of Bounds

Simulink Design Verifier was not able to decide these objectives due to array out of bounds in the model.

e [Type Model Trem Description ;:::E(:L:c) Test Case
i Test objective |Lost Objective Objective. 3. Inf) 18 [oa
0 [Test objective |Test Objecine Objective (Inf 0) 15 o

Objectives Undecided

For all types of objectives, the Objectives Undecided section lists the objectives for
which the analysis was unable to determine an outcome in the allotted time.

13-47



13 Reviewing the Results

13-48

In this property-proving example, either the software exceeded its analysis time limit
(which the Maximum analysis time parameter specifies) or you aborted the analysis
before it completed processing these objectives.

Objectives Undecided
Simuink Design Verifier was not able to process these objectives with the current options.

Analysis

# | Type Model Item Description Time (seq)  Commterexample
Proof . . .
1 - Verify Output FoutCorrect Objective: T -1 n'a
objective
Proof .
\Verify Output/ToutCorrect Objective: T -1 n'a

objective

Model Items Chapter

The Model Items chapter of the report includes a table for each object in the model that
defines coverage objectives. The table for a particular object lists all of the associated
objectives, the objective types, objective descriptions, and the status of each objective at
the end of the analysis.

The table for an individual object in the model will look similar to this one for the
Discrete-Time Integrator in the PI Controller subsystem of the
sldvdemo cruise control example model.

Controller/PI Controller/Discrete-Time Integrator

# Type Description Status Test

Case
31 Decision Eﬁiﬁiﬁg}[ ;esult = Satisfied 3
32 Decision ?;t‘igmg rTesult = Satisfied 8
33 Decision ?;;ia]?;i TFESUH = Satisfied 3
34 Decision ?;;ia]?;i T.FSUH = Satisfied 9

To highlight a given object in your model, click View at the upper-left corner of the table;
the software opens a new window that displays the object in detail. To view the details of
the test case that was applied to a specific objective, click the test case number in the last
column of the table.



Simulink Design Verifier Reports

Design Errors Chapter

If you run a design error detection analysis, the report includes a Design Errors chapter.
This chapter includes sections that summarize the design errors the analysis validated or
falsified:

* “Table of Contents” on page 13-49
*  “Summary” on page 13-49
* “Test Case” on page 13-49

Table of Contents

Each Design Errors chapter contains a table of contents. Each item in the table of
contents is a hyperlink to results about a specific design error.

Summary
The Summary section lists:

* The model item
* The type of design error that was detected (overflow or division by zero)
* The status of the analysis (Falsified or Proven Valid)

In the following example, the software analyzed the sldvdemo debounce falseprop
model to detect design errors. The analysis detected an overflow error in the Sum block
in the Verification Subsystem named Verify True Output.

Summary

Model Item: Verify True Output/Sum

Type: Overflow
Status: Falsified
Test Case

The Test Case section lists the time step and corresponding time at which the test case
falsified the design error objective. The Inport block raw had a value of 255, which
caused the overflow error.

13-49



13 Reviewing the Results

13-50

Test Case

. 0-
Time 0.01

Step 1-2
raw 255

Test Cases Chapter

If you run a test generation analysis, the report includes a Test Cases chapter. This
chapter includes sections that summarize the test cases the analysis generated:

“Table of Contents” on page 13-50
“Summary” on page 13-50
“Objectives” on page 13-51
“Generated Input Data” on page 13-51
“Expected Output” on page 13-52
“Combined Objectives” on page 13-53
“Long Test Cases” on page 13-54

Table of Contents

Each Test Cases chapter contains a table of contents. Each item in the table of contents is
a hyperlink to information about a specific test case.

Summary

The Summary section lists:

Length of the signals that comprise the test case
Total number of test objectives that the test case achieves



Simulink Design Verifier Reports

Summary
Length: 0.06 second (7 sample periods)
Objectives )
Satisfied:
Objectives

The Objectives section lists:

» The time step at which the test case achieves that objective.
* The time at which the test case achieves that objective.

* Alink to the model item associated with that objective. Clicking the link highlights the
model item in the Simulink Editor.

* The objective that was achieved.

Objectives

Step Time Model Item Objectives

Controller/PI Controller/Discrete-Time

7 0.06 Integrator

integration result >= upper limit T

Generated Input Data

For each input signal associated with the model item, the Generated Input Data section
lists the time step and corresponding time at which the test case achieves particular test
objectives. If the signal value does not change over those time steps, the table lists the
time step and time as ranges.

13-51



13 Reviewing the Results

13-52

Generated Input Data

i 0.01-
Time 0 0.05 0.06
Step |1 2-6 7
enable |1 1 1
brake |0 0 0
set 1 0 1
me 1 1 -
dec 1 0 -
speed 97 0 0

Note The Generated Input Data table displays a dash (-) instead of a number as a signal
value when the value of the signal at that time step does not affect the test objective. In
the harness model, the Inputs block represents these values with zeros unless you enable
the Randomize data that does not affect outcome parameter (see “Randomize data
that do not affect the outcome” on page 15-65).

Expected Output

If you select the Include expected output values on the Design Verifier > Results
pane of the Configuration Parameters dialog box, the report includes the Expected Output
section for each test case. For each output signal associated with the model item, this
table lists the expected output value at each time step.



Simulink Design Verifier Reports

Expected Output These output values are expected assuming that inputs that do not affect the test

objectives (- in the table above) are given a default value - 0 for numeric types, and default value for
enumerated types.

Time 0 0.010.02 0.03 [0.04 0.05 0.06
Step 1 2 3 4 S 6 7
throt 0 1.96 1.98982.01972.0497|2.0798 0.05
target|97/98 |99 100 101 102 |0

Combined Objectives

If you set the Test suite optimization option to CombinedObjectives (the default), the
Test Cases chapter may include individual information about many test cases.

13-53



13 Reviewing the Results

Chapter 5. Test Cases

Table of Contents

Test Case 1
Test Case 2
Test Case 3
Test Case 4
Test Case 5
Test Case 6
Test Case 7
Test Case 8
Test Case 9

This section contains detailed information about each generated test case.

Test Case 1

Summary

Length: 0 second (1 sample period)
Objectives 12

Satisfied:

Long Test Cases

If you set the Test suite optimization option to LongTestcases, the Test Cases chapter
in the report includes fewer sections about longer test cases.

13-54



Simulink Design Verifier Reports

Chapter 5. Test Cases

Table of Contents
Test Case 1

This section contains detailed information about each generated test case.

Test Case 1

Summary

Length: 0.26 second (27 sample periods)
Susteds 2

Properties Chapter

If you run a property-proving analysis, the report includes a Properties chapter. This
chapter includes sections that summarize the proof objectives and any counterexamples
the software generated:

» “Table of Contents” on page 13-55
* “Summary” on page 13-55
* “Counterexample” on page 13-56

Table of Contents

Each Properties chapter contains a table of contents. Each item in the table of contents is
a hyperlink to information about a specific property that was falsified.

Summary

The Summary section lists:

13-55



13 Reviewing the Results

13-56

* The model item that the software analyzed

* The type of property that was evaluated

* The status of the analysis

In the following example, the software analyzed the

sldvdemo cruise control verification model for property proving. The analysis
proved that the input to the Assertion block named BrakeAssertion was nonzero.

Summary

Model Item: Safety Properties/BrakeAssertion
Property: Assert
Status: Falsified

Counterexample

The Counterexample section lists the time step and corresponding time at which the
counterexample falsified the property. This section also lists the values of the signals at
that time step.

Counterexample

: 0.02-
Time 00.01 0.04
Step 12 35
InputData.Actual speed 00 |0
[nputData.Switches.enable 11t 0
InputData.Switches.brake 00 |1
InputData.Switches.set 10 0
InputData.Switches.setlncDec.inc (1]1 0
InputData.Switches.setlncDec.dec00 0



Simulink Design Verifier Log Files

Simulink Design Verifier Log Files

Every time you analyze a model, Simulink Design Verifier creates a log file. To view the
log file, click View Log in the Simulink Design Verifier log window.

The log file contains a list of the analysis results for each object in the model. The content
of the log file corresponds to the analysis results displayed in the log window during the
analysis.

13-57



13 Reviewing the Results

1

2 12-Jun-2013 11:24:50

3 Starting test generation for model 'sldvdemc cruise control'
4 Compiling model... done

5 Translating model... done

[ 'sldvdemo cruise control' is compatible with Simulink Design Verifier.
7

i Generating tests...

9

10 SATISFIED

11 Controller/Logical Operator

12 Logic: MCDC expression for output with input port 3 T
13 Analysis Time = 00:00:01

14

15 SATISFIED

16 Controller/Logical Operator

17 Logic: MCDC expression for output with input port 2 T
18 Analysis Time = 00:00:01

135

20 SATISFIED

21 Controller/Logical Operator

22 Logic: MCDC expression for output with input port 1 T
23 Analysis Time = 00:00:01

24

25 SATISFIED

26 Controller/Logical Operator?z

27 Logic: MCDC expression for output with input port 1 T
28 Analysis Time = 00:00:01

29

30 SATISFIED

31 Controller/PI Controller

32 enable logical wvalue T

33 Analysis Time = 00:00:01

13-58



Review Analysis Results

Review Analysis Results

In this section...

“View Active Results” on page 13-59
“Load Previous Results” on page 13-59

“Explore Results” on page 13-60

View Active Results

After analysis is complete, the Simulink Design Verifier Results Summary window opens,
showing different ways you can use the results. See “Explore Results” on page 13-60.

If you close the Results Summary window so you can fix the cause of any analysis errors
in your model, you might need to review the analysis results again. If you have not closed
your model since you ran the analysis, you can reopen the latest analysis results for your
model. In the Simulink Editor, select Analysis > Design Verifier > Results > Active.
The Results Summary window reopens with the latest analysis results for your model.

You can also view Simulink Design Verifier analysis results in the Model Explorer.

Load Previous Results

If you want to review results of a previous analysis on a model, you can load these results
from the analysis data file. In the Simulink Editor, select Analysis > Design Verifier >
Results > Load. Browse and select the data file that corresponds to the analysis you
want to review.

For more information on analysis data files, see “Simulink Design Verifier Data Files” on
page 13-10.

If you load analysis results for a model from a data file that was generated with a previous
version of that model, you might see unexpected effects. To avoid inconsistencies between
your model and analysis results data, when you load results for a model, choose a data file
that contains results from the same version of that model.

13-59



13 Reviewing the Results

Explore Results

With active or previous analysis results loaded in the Model Explorer or Results Summary
window, you can perform the following tasks.

Task For more information

Highlight the analysis results on the model. |“Highlighted Results on the Model” on page
13-2

Generate a detailed analysis report. “Simulink Design Verifier Reports” on page
13-28

Create the harness model, or if the harness |“Simulink Design Verifier Harness Models”

model already exists, open it. on page 13-17

You will not be able to create the harness

model if:

* No design error objectives were falsified

* No test cases were generated

* No counterexamples were created

View the data file. “Simulink Design Verifier Data Files” on
page 13-10

View the log file. “Simulink Design Verifier Log Files” on
page 13-57

See Also

More About

. “Design Verifier Pane: Results” on page 15-62
. “Simulink Design Verifier Data Files” on page 13-10
. “Simulink Design Verifier Reports” on page 13-28

13-60




Analyzing Large Models and
Improving Performance

* “Sources of Model Complexity” on page 14-2

* “Analyze a Large Model” on page 14-3

* “Increase Allocated Memory for Analysis Report Generation” on page 14-8
* “Manage Model Data to Simplify the Analysis” on page 14-9

+ “Partition Model Inputs for Incremental Test Generation” on page 14-12
* “Bottom-Up Approach to Model Analysis” on page 14-14

+ “Extract Subsystems for Analysis” on page 14-15

* “Logical Operations” on page 14-21

* “Models with Large Verification State Space” on page 14-22

* “Counters and Timers” on page 14-23

* “Prove Properties in Large Models” on page 14-25



14 Analyzing Large Models and Improving Performance

Sources of Model Complexity

Some characteristics of Simulink models can cause problems during a Simulink Design
Verifier analysis in the following ways:

* Complexity of model inputs due to:
* Large number of inputs (The number of inputs can vary, depending on the
individual model.)
* Types of inputs (floating-point values, for example)
+ The way the inputs affect the model state and the objectives of the analysis
* Number of possible simulation paths through a model
* Portions of the model that cannot be reached
» Large counters in the model

The topics in “Complexity Reduction” describe techniques designed to reduce the impact
of this complexity and achieve the best performance from Simulink Design Verifier.

Most of these techniques focus on test generation for large models. However, you can use
many of them to detect design errors or prove the properties of a large model and
generate counterexamples when a property is disproved. In addition, “Prove Properties in
Large Models” on page 14-25 describes specific techniques for proving properties in a
large model.

14-2



Analyze a Large Model

Analyze a Large Model

In this section...

“Types of Large Model Problems” on page 14-3

“Summarize Model Hierarchy and Compatibility” on page 14-4
“Use the Default Parameter Values” on page 14-4

“Modify the Analysis Parameters” on page 14-6

“Use the Large Model Optimization” on page 14-6

“Stop the Analysis Before Completion” on page 14-6

Types of Large Model Problems

The Simulink Design Verifier software may encounter some of these problems when
analyzing a large model:

* Unsatisfiable objectives — The software proved there are no test cases that exercise
these test objectives, and did not generate any test cases.

* Undecided objectives — The software was not able to satisfy or falsify these objectives.

* Objectives with errors — This problem usually occurs when a model component uses
nonlinear arithmetic, which can affect a test objective.

» Cannot complete the analysis in the time allotted — This problem may indicate an area
of your model where the software encountered problems, or you may need to increase
value of the Maximum analysis time parameter.

* Analysis hangs — If the number of objectives processed remains constant for a
considerable length of time, the software has likely encountered complexity between
the model and its objectives.

* Does not achieve a high percentage of model coverage — When you run the test cases
on the harness model, the percentage of model coverage is insufficient for your
design.

The next few sections describe the initial steps to take when analyzing a large model.

Although these steps address test generation, you can use a similar approach when
detecting design errors or proving properties in a model.

14-3



14

Analyzing Large Models and Improving Performance

Summarize Model Hierarchy and Compatibility

You can use the Test Generation Advisor to summarize test generation compatibility,
condition and decision objectives, and dead logic for the model and model components.

The Test Generation Advisor performs a high-level analysis and fast dead logic detection.
You can use the results to better understand your model, particularly large models,
complex models, or models for which you are uncertain of their compatibility with
Simulink Design Verifier. For example, you can:

» Identify incompatibilities with test case generation.

* Identify complex components that might be time-consuming to analyze.

» Determine instances of dead logic.

* Get a summary of the component hierarchy.

* Get recommended test generation parameters.

You can access the Test Generation Advisor from the menu bar by clicking Analysis >
Design Verifier > Generate Tests > Advisor. For more information see “Use Test
Generation Advisor to Identify Analyzable Components” on page 7-22.

Use the Default Parameter Values

When you generate test cases, you should generally begin by analyzing the model using
the Simulink Design Verifier default parameter values:

1 Check to see if your model is compatible with Simulink Design Verifier, as described
in “Check Model Compatibility” on page 3-2.

2 Using the default parameter values, analyze the model. The following table lists the
default values for parameters in the Configuration Parameters dialog box that you
might change when analyzing large models.

Parameter Default Value Description

Maximum analysis 300 (seconds) If the analysis does not finish within the

time (s) specified time, the analysis times out and
terminates.

14-4




Analyze a Large Model

Parameter Default Value Description
Test suite CombinedObjectives |Generates test cases that address more than
optimization (Nonlinear one test objective, as with the

extended) CombinedObjectives option, but with

improved support for nonlinear arithmetic.
Each test case tends to include many time
steps.

Model coverage Condition/Decision |Generates test cases that achieve condition
objectives and decision coverage.

3

Review the following information in the Simulink Design Verifier log window while
the analysis runs:

* Number of objectives processed — How many objectives were processed? Did the
analysis hang after processing a certain number of objectives? The answers to
these questions might give you a clue about where a problem might lie.

* Number of objectives satisfied/Number of objectives falsified — Which objectives
were falsified?

* Time elapsed — Did the analysis time out, or did it finish within the specified
maximum analysis time?

When the analysis completes, you can highlight the results in the model and
individually review the analysis of each model object, as described in “Highlighted
Results on the Model” on page 13-2. You can also generate and review the Simulink
Design Verifier HTML report. This report contains links to the model elements for
satisfied and falsified objectives so you can see what portions of the model might
have problems. For more information, see “Simulink Design Verifier Reports” on page
13-28.

For a test-generation analysis, if all the test objectives have been satisfied, run the
test cases on the harness model to determine model coverage.

If model coverage is enough for your design, you do not need to do anything else. If
the coverage is insufficient, take additional steps to improve the analysis
performance, as described in the following sections.

Note A large percentage of falsified objectives and poor model coverage often indicate
that you need to change model parameter values to get complete coverage. This can
occur when you have tunable parameters in Constant blocks that are connected to
enabled subsystems or to the trigger inputs of Switch blocks. In these situations,

14-5



14 Analyzing Large Models and Improving Performance

14-6

configure Simulink Design Verifier parameter support as described in the example
“Specify Parameter Constraint Values for Full Coverage” on page 5-12.

Modify the Analysis Parameters

If the analysis satisfied most but not all of the objectives, try the following steps:

1 Increase the Maximum analysis time parameter. This gives the analysis more time
to satisfy all the objectives.

2 Set the Model coverage objectives parameter to Decision. Selecting this option
generates only test cases that achieve decision coverage. These test cases are a
subset of the MCDC option.

3 Rerun the analysis and review the report.

If the results are still not satisfactory, try the techniques described in the following
sections.

Use the Large Model Optimization

Set the Test suite optimization parameter to LargeModel or LargeModel
(Nonlinear Extended), and rerun the Simulink Design Verifier analysis.

The large model optimization strategies are designed for large, complex models. The
LargeModel (Nonlinear Extended) strategy includes improved support for
nonlinear arithmetic. These two strategies may or may not improve the results of your
analysis enough to fully test your design.

If you have outstanding objectives you want the software to generate, continue with the

following techniques.

Stop the Analysis Before Completion

Watch the Objectives processed value in the log window. If about 50 percent of the
Maximum analysis time parameter has elapsed and this value does not increase, the
model analysis may have trouble processing certain objectives. If the analysis does not
progress, take the following steps:

1  Click Stop in the log window.



Analyze a Large Model

A dialog box appears, informing you that the analysis was aborted and asking you if
you still want to produce results.

Click Yes to save the results of the analysis so far.

The log window lists the following options, depending on which analysis mode you
ran:

* Highlight analysis results on model

* Generate detailed analysis report

* Create harness model

* Simulate tests and produce a model coverage report

Click Generate detailed analysis report.

In the HTML report, review the following sections to identify the model elements that
are causing problems:

* Objectives Undecided when the Analysis was Stopped

* Objectives Producing Errors

Review the model elements that have undecided objectives or objectives with errors
to see if any of the following problems are present. Consult the respective
documentation for specific techniques to improve the analysis.

Problem in your model More information

Floating-point inputs “Manage Model Data to Simplify the
Analysis” on page 14-9

Nonlinear operations * “Bottom-Up Approach to Model
Analysis” on page 14-14

» “Logical Operations” on page 14-
21

Large state spaces “Models with Large Verification State
Space” on page 14-22

Large timers and time delays “Counters and Timers” on page 14-23

14-7



14 Analyzing Large Models and Improving Performance

Increase Allocated Memory for Analysis Report
Generation

14-8

When you analyze a model with a large root-level input signal count, you may encounter
an insufficient memory error when Simulink Design Verifier is generating the report.

When this occurs, you need to increase the amount of memory the Sun™ Java® Virtual
Machine (JVM™) software can allocate. For steps on how to increase this memory, see
“Increase the MATLAB JVM Memory Allocation Limit” (MATLAB Report Generator).



Manage Model Data to Simplify the Analysis

Manage Model Data to Simplify the Analysis

In this section...

“Simplify Data Types” on page 14-9
“Constrain Data” on page 14-9

Simplify Data Types

One way to simplify your model is to use for the designated signal data type a data type
requiring the least amount of space for the expected data. For example, do not use an int
data type for Boolean data, because only one bit is required for Boolean data.

In another example, suppose you have a Sum block with two inputs that are always
integers between -10 and 10. Set the Output data type parameter to int8, rather than
int32 or double.

To display the signal data types in the model window, select Display > Signals & Ports
> Port Data Types.
Constrain Data

Another effective technique for reducing complexity is to restrict the inputs to a set of
representative values or, ideally, a single constant value. This process, called
discretization, treats the input as if it were an enumeration. Discretization allows you to
handle nonlinear arithmetic from multiplication and division in the simplest way possible.

The following model has a Product block feeding a Saturation block.

D

X

Cut1

Saturation

-

Product

14-9



14 Analyzing Large Models and Improving Performance

14-10

The Simulink Design Verifier software generates errors when attempting to satisfy the
upper and lower limits of the Saturation block, because the software does not support
nonlinear arithmetic. To work around these errors, restrict one of the inputs to a set of
discrete values.

Identify discrete values that are required to satisfy your testing needs. For example, you
may have an input for model speed, and your design contains paths of execution that are
conditioned on speed above or below thresholds of 80, 150, 600, and 8000 RPM. For an
effective analysis, constrain speed values to be 50, 100, 200, 1000, 5000, or 10000 RPM
so that every threshold can be either active or inactive.

If you need to use more than two or three values, consider specifying the constrained
values using an expression like

num2cell(minval:increment:maxval)

Using the previous example model, restrict the second input (y) to be either 1, 2, 5, or 10
using the Test Condition block as shown in the following model. The Simulink Design
Verifier software produces test cases for all inputs.

1281 Dt 1
i O Saturation

Product

You can also constrain signals that are intermediate or output values of the model.
Constraining such signals makes it easier to work around multiplication or division inside
lower level subsystems that do not depend on model inputs.

Note Discretization is best limited to a small number of inputs (less than 10). If your
model requires discretization of many inputs, try to achieve model coverage through



Manage Model Data to Simplify the Analysis

successive simulations, as described in “Partition Model Inputs for Incremental Test
Generation” on page 14-12.

Test Condition blocks do not need to be placed exactly on the inputs. In deciding where to
place the constraints in your model, consider the following guidelines:

Favor constraints on the input values because the software can process inputs easier.

If you need to place constraints on both the input and the output, for example, to avoid
nonlinear arithmetic, one of the constraints should be a range such as [minval
maxval]. The software first tests the values at both ends of the range and can return
a test case, even if the underlying calculations are nonlinear.

Make sure that constraints at corresponding input and output points are not
contradictory. Do not constrain the output signals to values that are not achievable
because of the constraints on the input values.

Avoid creating constraints that contradict the model. Such contradictions occur when
a constraint can never be satisfied because it contradicts some aspect of the model or
another constraint. Analyzing contradictory models can cause Simulink Design Verifier
to hang.

The next model is a simple example of a contradictory model. The second input to the
Multiply block is the constant 1, but the Test Condition block constrains it to a value of
2, 5, or 10. The analysis cannot achieve all the test objectives in this model.

D

X

« " —D
25100 - Cutl
Saturation

Constant

Product

When you work with large models that have many multiplication and division
operations, you may find it easier to add constraints to all of the floating-point inputs
rather than to identify the precise set of inputs that require constraints.

14-11



14 Analyzing Large Models and Improving Performance

Partition Model Inputs for Incremental Test Generation

14-12

As described in “Constrain Data” on page 14-9, you can constrain the values of model
inputs using the Simulink Design Verifier Test Condition block.

Like other Simulink parameters, constraint values can be shared across several blocks by
referencing a common workspace variable; you can initialize constraint values using
MATLAB commands. If you have several inputs related to speed, such as desired speed,
measured speed, and average speed, you might choose to constrain all of them to the
same set of values.

As an advanced technique for experienced MATLAB programmers, you can use
parameterized constraints and successive runs of Simulink Design Verifier to implement
an incremental test-generation technique:

1 Partition model inputs so that some are held constant, some are constrained to sets of
constants using the Test Condition block, and some can have any value.

2 Generate test cases and run those test cases to collect model coverage.
Choose new values and partition the inputs with these new values.

4 Generate test cases for missing coverage using the sldvgencov function and the
current test coverage.

Note To view an example of extending an existing test suite to achieve missing
model coverage, enter the following at the command prompt in the MATLAB
Command Window:

showdemo('sldvdemo incremental test generation')

5 Repeat steps 3 and 4 until you have achieved the desired coverage.

Partition the model inputs that enable further simplification when an analysis runs.
Consider the following model, which has three mutually independent enabled subsystems:
* Normal Mode

* Shutdown Mode

* Failure Mode



Partition Model Inputs for Incremental Test Generation

Y

r

¥

I Int n
o Court 1
B In2
Normal Mode
==z
r
o Int n
B In2 Ot 1
B In3

Y

¥

Shutdown Mode

r

In¥

Ini
In2

In3

n

Ot 1

¥

Failure Mede

Merge

Out1

Merge

You can incrementally generate test cases for each subsystem by constraining the first
input to a constant value before running an analysis. In this way, as you create test cases
for each subsystem, the software ignores the complexity of the other two subsystems.

14-13



14 Analyzing Large Models and Improving Performance

Bottom-Up Approach to Model Analysis

14-14

Simulink Design Verifier software works most effectively at analyzing large models using
a bottom-up approach. In this approach, the software analyzes smaller model components
first, which can be faster than using the Large model test suite optimization.

The bottom-up approach offers several advantages:

It allows you to solve the problems that slow down error detection, test generation, or
property proving in a controlled environment.

Solving problems with small model components before analyzing the model as a whole
is more efficient, especially if you have unreachable components in your model that
you can only discover in the context of the model.

You can iterate more quickly—find a problem and fix it, find another problem and fix it,
and so on.

If one model component has a problem—for example, a component is unreachable in
simulation—that can prevent the software from generating tests for all the objectives
in a large model.

Try this workflow with your large model:

1

Use the Test Generation Advisor to identify analyzable model components and
generate tests for these components. For more information, see “Use Test Generation
Advisor to Identify Analyzable Components” on page 7-22.

Fix any problems by adding constraints or specifying block replacements.

After you analyze the smaller components, reapply the required constraints and
substitutions to the original model. Analyze the full model.

When you finish a bottom-up analysis, you have a top-level model that Simulink
Design Verifier can analyze quickly.



Extract Subsystems for Analysis

Extract Subsystems for Analysis

In this section...

“Overview of Subsystem Extraction” on page 14-15

“sldvextract Function” on page 14-15

“Structure of the Extracted Model” on page 14-16

“Analyze Subsystems That Read from Global Data Storage” on page 14-16

“Analyze Function-Call Subsystems” on page 14-18

Overview of Subsystem Extraction

If you have a large model that slows down your analysis or has unreachable objectives,
you may want to analyze atomic subsystems or Stateflow atomic subcharts using Simulink
Design Verifier. This technique allows you to implement a bottom-up approach to
analyzing a large model, as described in “Bottom-Up Approach to Model Analysis” on
page 14-14.

When you analyze a subsystem or atomic subchart, the software:

* Extracts the subsystem or subchart into a new model.

» Ifrequired, adds blocks to the newly created model that replicate the execution
context of the subsystem or subchart within its parent model.

* Analyzes the extracted model and produces results.

Note The Simulink Design Verifier software can only analyze atomic subsystems and
atomic subcharts.

For more information about analyzing subsystems, see “Generate Test Cases for a
Subsystem” on page 1-26.

For more information about analyzing atomic subcharts, see “Analyze a Stateflow Atomic
Subchart” on page 1-28.

sldvextract Function

The sldvextract function allows you to extract subsystems and atomic subcharts for
component verification. By extracting the subsystem or atomic subchart, you can verify

14-15



14 Analyzing Large Models and Improving Performance

14-16

the component in isolation from the rest of the system, allowing you to test the
component algorithm. For more information, see “What Is Component Verification?” on
page 10-2 and “Functions for Component Verification” on page 10-4.

Structure of the Extracted Model

When you analyze a subsystem or atomic subchart, Simulink Design Verifier creates a
new model that contains the subsystem or atomic subchart, and any input and output
ports that correspond to the ports connected to the original subsystem. The software
assigns the following properties to the ports in the new model, as determined by
compiling the original model:

* Data types

* Sample rates

* Signal dimensions

The software names the new model subsystem name, where subsystem name is the
name of the subsystem.

The next sections provide examples of how Simulink Design Verifier extracts and analyzes
subsystems.

Analyze Subsystems That Read from Global Data Storage

A data store is a repository to which you can write data, and from which you can read
data, without having to connect an input or output signal directly to the data store.

You create a data store using a Data Store Memory block or a Simulink.Signal object.
The Data Store Memory block or Simulink.Signal object represents the data store and
specifies its properties. Every data store must have a unique name.

When you analyze a subsystem that reads data from a data store that is accessed outside
the subsystem, the analysis:

* Adds a Data Store Memory block to the new model.

* Adds an input port that writes to the data store. Since the input writes to the data
store, the data can have any values (within the specified data type) for the purpose of
the Simulink Design Verifier analysis.



Extract Subsystems for Analysis

If the data store specifies minimum and maximum values, those values are assigned to
the new input port.

The following example analyzes a subsystem in the s1 subsys fcncall8 example
model:

1

Open the sl _subsys fcncall8 example model:

sl subsys fcncall8

This model defines a data store A, from which the atomic subsystem Reader reads
data using a Data Store Read block.

Right-click the Reader subsystem and select Design Verifier > Generate Tests for
Subsystem.

The Simulink Design Verifier log window shows that the software extracts the
subsystem into a new model named Reader, analyzes the extracted model, and offers
you the choice of which results to produce.

Open the new Reader model that the software created in <current folder>
\sldv_output\Reader.

¥

funitiond)

outip——

read
Reader

Data Store
Memary H—

The new Inport block A writes into the data store, which is used by the subsystem
Reader in the new model.

14-17


matlab:sl_subsys_fcncall8

14 Analyzing Large Models and Improving Performance

14-18

Analyze Function-Call Subsystems

A function-call subsystem is a triggered subsystem whose execution is determined by
logic internal to a C MEX S-function instead of by the value of a signal. Function-call
subsystems are always atomic.

Note For more information, see “Function-Call Subsystems and S-Functions” (Simulink).

When you analyze a model with a function-call subsystem, Simulink Design Verifier
creates a new model with an Inport block that mimics the trigger and a copy of the
subsystem. The software then analyzes the new model.

The following example analyzes a function-call subsystem in the sl _subsys fcncall2
model:

1 Openthe sl subsys fcncall2 example model:

sl subsys fcncall2

This model contains a Stateflow chart named Chart that triggers the function-call
subsystem f.

2 Right-click the f subsystem and select Design Verifier > Generate Tests for
Subsystem.

The software extracts the subsystem into a new model named f0, analyzes the
extracted model, and produces results.


matlab:sl_subsys_fcncall2

Extract Subsystems for Analysis

Simulink Design Verifier Results Summary: f0 >

Progress |

Objectives processed 5/5

Satisfied 5
Unsatisfiable 0
Elapsed time 0:11

Test generation completed normally.
5/5 objectives are satisfied.

Results:

* Highlight analysis results on model

* \View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (PDF)

* Create harness model

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Data saved in: f0_sldvdata.mat
in folder: H:\Documents\MATLAB \sldv_outputhfo

View Log Close

Open the f0 model that the software created in <current folder>\sldv_output
\f0.

The Inport block and the new subsystem block mimic the trigger for the function-call
subsystem f in the new 0 model.

14-19



14 Analyzing Large Models and Improving Performance

f !

1 :
Signal spec. i

and roufing i

k 4

i)

f

Signal spec.
and routing

14-20



Logical Operations

Logical Operations

If you have a Simulink model with both logical and arithmetic operations, consider
analyzing only the logical operations.

The Simulink Design Verifier software does not support nonlinear arithmetic of floating-
point numbers, as occurs with multiplication or division, unless one of the multiply
operands or the divisor is a constant.

To simplify models that contain integers or floating-point numbers, the software maps the
model computations into expressions of Boolean variables. For example, the software
might represent an eight-bit number as a set of eight Boolean values, with one for each
digit. It might represent a bit-wise OR operation of two eight-bit integers as eight separate
logical OR operations.

Mapping problems of one data type into Boolean variables is complex, and this complexity
increases when the software performs such mapping. The software handles models with
predominantly logical signals more efficiently than it does those with large integer or
floating-point signals.

Note Simulink Design Verifier software can handle floating-point inputs when their
values impact the design through linear inequalities such as x < y ora > 0.

In addition, input complexity can result from certain cast operations. For example, casting
a double to an int8 can introduce a non-linearity in certain situations.

14-21



14 Analyzing Large Models and Improving Performance

Models with Large Verification State Space

14-22

Persistent design variables (variables that are assigned in one time step and used in a
later time step during simulation) affect the complexity of analysis in much the same way
as input complexity. You can use one or more of the following techniques to simplify the
complexity of the state space you want to search:

* Apply constraints to input signals that are delayed.

* Constrain the inputs to states that are contained within conditionally executed
subsystems.

* Limit the number of test case steps by setting the Maximum test case step
parameter to 20.

* Increase the sample time for part or all of the model. (This procedure is similar to
reducing timer thresholds, as described in “Counters and Timers” on page 14-23.) A
test case that you generate at a lower sample rate often has similarities to the test
case with a high sample rate that you need to achieve an objective.

* Use tight variable types where ever possible. For example, if a flag with values of 0 or
1 only is defined as a double, restrict the type to Boolean.

States that are computed from previous state values present a special challenge. For
example, if you want to restrict the integrator value in a PID controller, you can only use a
set of values that includes all reachable values from the initial value. Otherwise, the input
must be forced to 0. Neither of these limitations is practical and would probably make the
analysis less complete.

Alternatively, you can use existing simulation data to help satisfy your testing needs. If
you have existing test data, run it on your model and collect model coverage. For an
example of extending an existing test suite to achieve missing model coverage, see
Extend an Existing Test Suite.



Counters and Timers

Counters and Timers

Simulink Design Verifier analysis searches through sequences of states to find input
values that drive the analysis to reach a state that satisfies an objective. Each counter
value or timer step corresponds to a different state, so the presence of long timers or
counters can dramatically increase the size of the state representation. Since analysis
complexity depends on the size of the state representation, you must give special
consideration to counters and timers in your model to avoid over complicating Simulink
Design Verifier analysis.

Note For the purposes of Simulink Design Verifier analysis, the term configuration refers
to a set of values for all the persistent information in your model.

The search process investigates all configurations that can be reached in a single timer
step before considering any of the configurations that can be reached in two timer steps.
Likewise, the search investigates all configurations that can be reached in two timer steps
before it considers any configuration that requires three or more timer steps, and so on.
The number of timer steps required to exhaust the counter directly affects the number of
states that the analysis needs to search. Models that contain time delays, such as
countdown timers, complicate the analysis by forcing the search to span a large number
of states.

You may see similar effects when systems use extensive averaging and filtering to delay
the response to a change in inputs. Any aspect of the design that delays the response
causes the test sequences to contain more timer steps, resulting in longer test cases that
are more difficult to identify.

Some basic techniques you can use to improve analysis performance in models with
counters or timers include the following:

* Choose very small values for time delays. A system with a logical error when a time
delay is set to 2000 steps usually demonstrates that error if the time delay is changed
to 2 steps. If your system has several delays, choose small but unique values for each
of them so that your delays are progressively satisfied.

* Make the initial values of counters and timers parameter values that Simulink Design
Verifier can modify. The software finds initial values that allow shorter test cases to
exceed thresholds. For more information, see “Parameter Constraint Values” on page
5-2.

14-23



14 Analyzing Large Models and Improving Performance

14-24

Choose higher frequency cutoffs for filters and fewer samples to average to minimize
filtering delays.

Some more advanced techniques you can use to improve analysis performance in models
with counters or timers include the following:

Use sldvtimer to identify timer patterns that can be optimized for Simulink Design
Verifier test generation.

Use an existing test case or set of test cases that exhausts the counter or timer, and
extend those test cases to create a full test suite. For more information, see Defining
and Extending Existing Test Cases.



Prove Properties in Large Models

Prove Properties in Large Models

Property proving uses the same underlying techniques as design error detection and test
generation and suffers from the same performance limitations. However, unlike design
error detection or test generation, you often cannot simplify the problem without
compromising the validity of the results.

You can quickly prove simple proof objectives that are not affected by model dynamics.
However, a thorough proof requires that Simulink Design Verifier search through all
reachable configurations of your model—even the ones that are reached only after long
time delays. The computation time and memory required to search a model completely
often make an exhaustive proof impractical.

There are two techniques you can use to improve the performance of property proving in
a large model:

In this section...
“Find Property Violations While Designing Your Model” on page 14-25

“Combine Proving Properties and Finding Proof Violations” on page 14-26

Find Property Violations While Designing Your Model

Simulink Design Verifier software offers a strategy that quickly identifies property
violations in larger, more complicated models. While designing your model, analyze your
model using this strategy so that you can fix any property violations before finalizing your
design.

To identify property violations of a model, on the Design Verifier > Property Proving
pane of the Configuration Parameters dialog box, specify the value of the Strategy
parameter as FindViolation. When you use this strategy, the Maximum violation
steps parameter becomes active so that you can specify an upper bound for the number
of time steps in the search.

When analyze the model, the software searches only for property violations within the
specified number of time steps. By identifying and fixing the property violations first, you
improve the performance of a property-proving analysis that uses the Prove strategy.

If a violation is not detected, it is impossible to violate the property with any input
sequence having fewer time steps than the specified limit. However, you cannot prove

14-25



14 Analyzing Large Models and Improving Performance

14-26

that the property is true because there might be a counterexample within more time steps
than the specified limit.

Combine Proving Properties and Finding Proof Violations

Use the following technique for proving properties in large model. This technique
combines proving and searching for violations:

1

On the Design Verifier > Property Proving pane, set the Strategy parameter to
Prove.

On the Design Verifier pane, use a relatively short value for the Maximum analysis
time parameter, such as 5-10 minutes. If trivial counterexamples exist — or if your
properties do not depend on model dynamics—the analysis should complete in that
amount of time.

Change the Strategy parameter to FindViolation, and choose a small bound for
the Maximum violation steps parameter, such as 4, 5, or 6. If your properties have
simple counterexamples, the software should discover them.

If you do not find any violations with a small bound, increase the bound and look for
longer counterexamples.

a Increase the bound in several increments, and observe the processing time and
memory consumption. System resources might limit the length of violation that
can be searched.

b  In addition, consider the dynamics of your model and the number of time steps
required to transition between an arbitrary pair of configurations. If you choose
too large a bound, the violation search can be more complex than the unbounded
proof.

If you can run violation searches with relatively large bounds, e.g., 30-50 time steps,
switch back to the Prove strategy, and use a longer time limit, such as several hours.



Simulink Design Verifier
Configuration Parameters

* “Simulink Design Verifier Options” on page 15-2

* “Design Verifier Pane”
* “Design Verifier Pane:
* “Design Verifier Pane:
* “Design Verifier Pane:
* “Design Verifier Pane:
* “Design Verifier Pane:
* “Design Verifier Pane:
* “Design Verifier Pane:

on page 15-11

Block Replacements” on page 15-20
Parameters” on page 15-23

Test Generation” on page 15-34
Design Error Detection” on page 15-51
Property Proving” on page 15-57
Results” on page 15-62

Report” on page 15-72




15 simulink Design Verifier Configuration Parameters

Simulink Design Verifier Options

15-2

In this section...

“Options in Configuration Parameters Dialog Box” on page 15-2
“Design Verification Options Objects” on page 15-2

“Command-Line Parameters for Design Verification Options” on page 15-2

Options in Configuration Parameters Dialog Box

You can set options for Simulink Design Verifier analysis in the Configuration Parameters
dialog box. To view the options, select Analysis > Design Verifier > Options. The
Design Verifier pane of the model configuration parameters opens.

By default, Simulink Design Verifier options do not appear in the Configuration
Parameters dialog box. In the Simulink Editor, when you select Analysis > Design
Verifier > Options, Simulink Design Verifier initially associates its default options with
that model. After you save the model, you can access Simulink Design Verifier options
directly from the Configuration Parameters dialog box or from the Model Explorer.

See “Configuration Parameters Dialog Box Overview” (Simulink) for more information
about working with this interface.

Design Verification Options Objects

You can use the sldvoptions function to specify Simulink Design Verifier options at the
command line.

To view in the MATLAB Command Window the design verification options associated with
a Simulink model, use the following syntax:

opts = sldvoptions('model name');
get(opts)

Command-Line Parameters for Design Verification Options

Use the following parameters to configure the behavior of Simulink Design Verifier. Use
the get param and set param functions to retrieve and specify values for these
parameters programmatically.




Simulink Design Verifier Options

For each parameter, the Location column indicates where you can set its value in the
Configuration Parameters dialog box. The Values column shows the type of value
required, the possible values (separated with a vertical line), and the default value

(enclosed in braces).

Parameter

Location

Values

DVAbsoluteTolerance

Set by the Floating point
absolute tolerance
parameter on the Design
Verifier > Test Generation
pane.

double {'1.0e-05"}

DVAssertions

Set by the Assertion blocks
parameter on the Design
Verifier > Property Proving
pane.

"EnableAll' | 'DisableAll’
| {'UseLocalSettings'}

DVAutomaticStubbing

Set by the Automatic
stubbing of unsupported
blocks and functions
parameter on the Design
Verifier pane.

{'on'} | 'off'

DVBlockReplacement

Set by the Apply block
replacements parameter on
the Design Verifier > Block
Replacements pane.

‘on' | {'off'}

DVBlockReplacement-
ModelFileName

Set by the File path of the
output model parameter on
the Design Verifier > Block
Replacements pane.

character array {' $ModelName
$ replacement'}

DVBlockReplacement -
RuleslList

Set by the List of block
replacement rules parameter
on the Design Verifier >
Block Replacements pane.

character array
{'<FactoryDefaultRules>"'}

DVCoverageDataFile

Set by the Coverage data file
parameter on the Design
Verifier > Test Generation
pane.

character array {"' '}

15-3



15 simulink Design Verifier Configuration Parameters

Parameter

Location

Values

DVCovFilter

Set by the Ignore objectives
based on filter parameter on
the Design Verifier > Test
Generation pane.

‘on' | {'off'}

DVCovFilterFileName

Set by the Coverage filter file
parameter on the Design
Verifier > Test Generation
pane.

character array {"' '}

DVDataFileName

Set by the Data file name
parameter on the Design
Verifier > Results pane.

character array {' $ModelName
$ sldvdata'}

DVDesignMinMaxCheck

Set by the Check specified
intermediate minimum and
maximum values parameter
on the Design Verifier >
Design Error Detection
pane.

‘on' | {'off'}

DVDesignMinMax -
Constraints

Set by the Use specified
input minimum and
maximum values parameter
on the Design Verifier pane.

{'on'} | 'off'

DVDetectDeadLogic

Set by Dead logic on the
Design Verifier > Design
Error Detection pane.

‘on' | {'off'}

DVDetectDivisionByZero

Set by the Division by zero
parameter on the Design
Verifier > Design Error
Detection pane.

{'on'} | 'off'

DVDetectIntegerOverflow

Set by the Integer overflow
parameter on the Design
Verifier > Design Error
Detection pane.

{'on'} | 'off'

15-4




Simulink Design Verifier Options

Parameter Location Values
DVDetectOutOfBounds Set by the Out of bound ‘on' | {'off'}
array access parameter on
the Design Verifier > Design
Error Detection pane.
DVDisplayReport Set by the Display report {'on'} | 'off'
parameter on the Design
Verifier > Report pane.
DVDisplayUnsatisfiable- |Set by the Display ‘on' | {'off'}
Objectives unsatisfiable test objectives
parameter on the Design
Verifier pane.
DVExtendExistingTests Set by the Extend existing ‘on' | {'off'}

test cases parameter on the
Design Verifier > Test
Generation pane.

DVExistingTestFile

Set by the Data file parameter
on the Design Verifier > Test
Generation pane.

character array {"' '}

DVHarnessModelFileName

Set by the Harness model

file name parameter on the
Design Verifier > Results

pane.

character array {' $ModelName
$ harness'}

DVIgnoreCovSatisfied

Set by the Ignore objectives
satisfied in existing
coverage data parameter on
the Design Verifier > Test
Generation pane.

‘on' | {'off'}

DVIgnoreExistTest-
Satisfied

Set by the Ignore objectives
satisfied by existing test
cases parameter on the
Design Verifier > Test
Generation pane.

{on'}| 'off'

15-5



15 simulink Design Verifier Configuration Parameters

Parameter Location Values
DVIncludeRelational- Set by the Include relational |[{'on'} | 'off'
Boundary boundary objectives

parameter on the Design

Verifier > Test Generation

pane.
DVMakeOutputFilesUnique |Set by the Make output file |[{'on'} | 'off'

names unique by adding a
suffix check box on the
Design Verifier pane.

DVMaxProcessTime Set by the Maximum analysis|double {'300'}

time parameter on the Design

Verifier pane.
DVMaxTestCaseSteps Set by the Maximum test int32 {'10000"'}

case steps parameter on the

Design Verifier > Test

Generation pane.
DVMaxViolationSteps Set by the Maximum int32 {'20"'}

violation steps parameter on

the Design Verifier >

Property Proving pane.
DVMode Set by the Mode parameter on |{ ' TestGeneration'} |

the Design Verifier pane. 'DesignErrorDetection' |

'"PropertyProving'

DVModelCoverage- Set by the Model coverage ‘None' | 'Decision' |
Objectives objectives parameter on the |{'ConditionDecision'} |

Design Verifier > Test
Generation pane.

'‘MCDC'

DVModelReferenceHarness

Set by the Reference input
model in generated harness
parameter on the Design
Verifier > Results pane of the
Configuration Parameters
dialog box.

‘on' | {'off'}

DVQutputDir

Set by Output folder on the
Design Verifier pane.

character array {'sldv_output/
$ModelName$ '}

15-6




Simulink Design Verifier Options

Parameter

Location

Values

DVParameterConstraints

Set by Constraint column in
Parameter Table on the
Design Verifier >
Parameters pane.

double array {[]}

DVParameterNames

Set by Name column in
Parameter Table on the
Design Verifier >
Parameters pane.

double array {[]}

DVParameterUseln-
Analysis

Set by Use column in
Parameter Table on the
Design Verifier >
Parameters pane.

cell array {[]}

DVParameters

Set by Enable parameter
configuration on the Design
Verifier > Parameters pane.

‘on' | {'off'}

DVParametersConfigFile-
Name

Set by Parameter
configuration file on the
Design Verifier >
Parameters pane.

This parameter is disabled
when
DVParametersUseConfigis
setto ‘on'.

character array
{'sldv_params template.m'}

DVParametersUseConfig

Set by Use parameter table
on the Design Verifier >
Parameters pane.

When set to 'on', this
parameter disables
DVParametersConfig-
FileName.

‘on' | {'off'}

DVProofAssumptions

Set by the Proof assumptions
parameter on the Design
Verifier > Property Proving
pane.

"EnableAll' | 'DisableAll’
| {'UseLocalSettings'}

15-7



15 simulink Design Verifier Configuration Parameters

Parameter Location Values
DVProvingStrategy Set by the Strategy parameter|'FindViolation' |
on the Design Verifier > {'Prove'} |

Property Proving pane.

'ProveWithViolationDetecti
on'

DVRandomizeNoEffectData

Set by the Randomize data
that do not affect the
outcome parameter on the
Design Verifier > Results
pane.

‘on' | {'off'}

DVReduceRationalApprox

Set by the Run additional
analysis to reduce instances
of rational approximation
parameter on the Design
Verifier pane.

{'on'} | 'off'

DVRelativeTolerance Set by the Floating point double {'0.01'}
relative tolerance parameter
on the Design Verifier > Test
Generation pane.
DVReportFileName Set by the Report file name |character array {'$ModelName

parameter on the Design
Verifier > Report pane.

$ report'}

DVReportIncludeGraphics

Set by the Include screen
shots of properties
parameter on the Design
Verifier > Report pane.

‘on' | {'off'}

DVReportPDFFormat

Set by the Generate
additional report in PDF
format parameter on the
Design Verifier > Report
pane.

‘on' | {off'}

DVSaveDataFile

Set by the Save test data to
file parameter on the Design
Verifier > Results pane.

{'on'} | 'off'

15-8




Simulink Design Verifier Options

Parameter

Location

Values

DVSaveExpectedOutput

Set by the Include expected
output values parameter on
the Design Verifier > Results
pane.

‘on' | {'off'}

DVSaveHarnessModel

Set by the Generate separate
harness model after
analysis parameter on the
Design Verifier > Results
pane.

‘on' | {off'}

DVSaveReport

Set by the Generate report of
the results parameter on the
Design Verifier > Report
pane.

‘on' | {off'}

DVSFcnExtraOptions

Set by the Additional options
for S-Functions parameter on
the Design Verifier pane.

character array {' '}

DVSFcnSupport

Set by the Support S-
Functions in the analysis
parameter on the Design
Verifier pane.

{'on'} | off!'

DVS1TestHarnessName

Set by the Test Harness
Name parameter on the
Design Verifier > Results
pane.

character array {' $ModelName
$ sldvharness'}

DVS1TestFileName

Set by the Test File Name
parameter on the Design
Verifier > Results pane.

character array {' $ModelName
$ test'}

DVTestConditions

Set by the Test conditions
parameter on the Design
Verifier > Test Generation
pane.

"EnableAll' | 'DisableAll’
| {'UseLocalSettings'}

DVTestObjectives

Set by the Test objectives
parameter on the Design
Verifier > Test Generation
pane.

"EnableAll' | 'DisableAll’
| {'UseLocalSettings'}

15-9



15 simulink Design Verifier Configuration Parameters

Parameter Location Values
DVTestSuiteOptimization |Set by the Test suite {'CombinedObjectives'} |
optimization parameter on 'IndividualObjectives' |
the Design Verifier > Test ‘LargeModel’ |
Generation pane. 'LongTestcases' |
'CombinedObjectives
(Nonlinear Extended)' |
'LargeModel (Nonlinear
Extended) '
See Also
More About

. “Design Verifier Pane” on page 15-11
. sldvoptions

15-10



Design Verifier Pane

Design Verifier Pane

Analysis options
Mode: Design error detection -
Maximum analysis time (s): (300
Display unsatisfiable test objectives
Automatic stubbing of unsupported blocks and functions
Support 5-Functions in the analysis

Use specified input minimum and maximum values

Output

Output folder: |sidv_output/$ModelNamed

Make output file names unique by adding a suffix

Check Model Compatibility

Detect Errors
¥ Advanced parameters

Run additional analysis to reduce instances of rational approximation

Additional options for S-Functions:

In this section...

“Design Verifier Pane Overview” on page 15-12

“Mode” on page 15-12

“Maximum analysis time” on page 15-13

“Display unsatisfiable test objectives” on page 15-14

“Automatic stubbing of unsupported blocks and functions” on page 15-14

“Support S-Functions in the analysis” on page 15-15

15-11



15 simulink Design Verifier Configuration Parameters

15-12

In this section...

“Use specified input minimum and maximum values” on page 15-16

“Output folder” on page 15-16

“Make output file names unique by adding a suffix” on page 15-17

“Check Model Compatibility” on page 15-18

“Generate Tests/Detect Errors/Prove Properties” on page 15-18

“Run additional analysis to reduce instances of rational approximation” on page 15-19
“Additional options for S-Functions” on page 15-19

Design Verifier Pane Overview

Specify analysis options and configure Simulink Design Verifier output.

Mode

Specify the analysis mode for Simulink Design Verifier.
Settings
Default: Test generation

Design error detection

Detects integer and fixed-point overflow errors and division-by-zero errors in a model
Test generation

Generates test cases for a model.
Property proving

Proves properties of a model.

Tip

The Simulink Design Verifier software specifies the value of this option automatically
when you select one of the following menu options:

* Analysis > Design Verifier > Generate Tests
* Analysis > Design Verifier > Detect Design Errors




Design Verifier Pane

* Analysis > Design Verifier > Prove Properties
Dependency

Selecting Test generation enables the Display unsatisfiable test objectives
parameter.

When you set the Mode parameter, the button below Check Model Compatibility
changes as follows:

* Mode: Test generation, button reads: Generate Tests

* Mode: Design error detection, button reads: Detect Errors

* Mode: Property proving, button reads: Prove Properties

Command-Line Information

Parameter: DVMode

Type: character array

Value: 'TestGeneration' | 'DesignErrorDetection' | 'PropertyProving’
Default: 'TestGeneration'

See Also

+ “Basic Workflow for Simulink Design Verifier” on page 1-31
* “What Is Design Error Detection?” on page 6-2

* “What Is Test Case Generation?” on page 7-2

* “What Is Property Proving?” on page 12-2

Maximum analysis time

Specify the maximum time (in seconds) that Simulink Design Verifier spends analyzing a
model.

Settings
Default: 300
The value that you enter represents the maximum number of seconds Simulink Design

Verifier analyzes your model.

15-13



15 simulink Design Verifier Configuration Parameters

15-14

Command-Line Information
Parameter: DVMaxProcessTime
Type: double

Value: any valid value

Default: 300

Display unsatisfiable test objectives

Specify whether to display warnings if the analysis detects unsatisfiable test objectives.
Settings
Default: Off

Y1 On

Displays a warning in the Simulation Diagnostics Viewer when Simulink Design
Verifier is unable to satisfy a test objective.

Off

Does not display a warning when Simulink Design Verifier is unable to satisfy a test
objective.

Tip If you select Display unsatisfiable test objectives, on the Test Generation pane,
set Test suite optimization to CombinedObjectives. If you perform test-generation
analysis on your model and the returned test objectives do not have outcomes, set Test
suite optimization to IndividualObjectives and reanalyze the model. The
IndividualObjectives strategy analyzes each objective independently and identifies
unsatisfiable objectives.

Command-Line Information

Parameter: DVDisplayUnsatisfiableObjectives
Type: character array

Value: 'on' | 'off'

Default: 'of '

Automatic stubbing of unsupported blocks and functions

Specify whether to ignore unsupported blocks and functions during analysis.



Design Verifier Pane

Settings
Default: On
Y On
Ignores unsupported blocks and functions and proceeds with the analysis.

Off

Displays a warning when Simulink Design Verifier encounters an unsupported block
or function and asks if you want to continue the analysis.

Command-Line Information
Parameter: DVAutomaticStubbing
Type: character array

Value: 'on' | 'off"'

Default: 'on'

See Also

“Handle Incompatibilities with Automatic Stubbing” on page 2-8

Support S-Functions in the analysis

Specify whether to enable support for S-Functions that have been compiled to be
compatible with Simulink Design Verifier.

Settings
Default: On

Y1 On

Enables support for S-Functions that have been compiled to be compatible with
Simulink Design Verifier.

Off
Simulink Design Verifier automatically stubs S-Functions during analysis.

Command-Line Information
Parameter: DVSFcnSupport

15-15



15 simulink Design Verifier Configuration Parameters

15-16

Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

“Support Limitations and Considerations for S-Functions and C/C++ Code” on page 3-37

Configuring S-Function for Test Case Generation

“Handle Incompatibilities with Automatic Stubbing” on page 2-8

Use specified input minimum and maximum values

Specify whether to generate test cases that consider specified minimum and maximum
values as constraints for all input signals in your model.

Settings
Default: On
Y1 On
Considers specified minimum and maximum values as constraints for all input signals.

Off
Ignores any specified minimum and maximum values.

Command-Line Information

Parameter: DVDesignMinMaxConstraints
Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

“Minimum and Maximum Input Constraints” on page 11-2

Output folder

Specify a path name to which Simulink Design Verifier writes its output.



Design Verifier Pane

Settings
Default: sldv_output/$ModelName$

* Enter a path that is either absolute or relative to the current folder.
* $ModelName$ is a token that represents the model name.

Tip

You can use the following parameters to customize the names and locations of Simulink
Design Verifier output:

* On the Results pane:

* Data file name

* Harness model file name

* Simulink Test options > Test File name
* On the Report pane:

* Report file name
+ File path of the output model
* On the Block Replacements pane:

* File path of the output model
Command-Line Information
Parameter: DVOQutputDir
Type: character array
Value: any valid path
Default: 'sldv_output/$ModelName$'
See Also

“Results Interpretation and Use”

Make output file names unique by adding a suffix

Specify whether Simulink Design Verifier makes its output file names unique by
appending a numeric suffix.

15-17



15 simulink Design Verifier Configuration Parameters

Settings
Default: On

4 On

Appends an incremental numeric suffix to Simulink Design Verifier output file names.
Selecting this option prevents the software from overwriting existing files that have
the same name.

Off

Does not append a suffix to Simulink Design Verifier output file names. In this case,
the software might overwrite existing files that have the same name.

Command-Line Information
Parameter: DVMakeOutputFilesUnique
Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

“Results Interpretation and Use”

Check Model Compatibility

Run a check to assess your model for compatibility with Simulink Design Verifier. For
more information, see “Simulink Design Verifier Checks”.

Generate Tests/Detect Errors/Prove Properties
When you set the Mode parameter, this button changes as follows:
* Mode: Test generation, button reads: Generate Tests

For more information, see “What Is Test Case Generation?” on page 7-2.
* Mode: Designh error detection, button reads: Detect Errors

For more information, see “What Is Design Error Detection?” on page 6-2.
* Mode: Property proving, button reads: Prove Properties

15-18



Design Verifier Pane

For more information, see “What Is Property Proving?” on page 12-2.

Run additional analysis to reduce instances of rational
approximation

Specify whether Simulink Design Verifier attempts to reduce the use of rational
approximation during analysis.

Settings

Default: On

4 On

When you analyze models for test case generation, property proving, or dead logic
detection, Simulink Design Verifier attempts to reduce the use of rational
approximation if the model uses single-precision floating-point values but no double-
precision floating-point values. Enabling this setting may increase analysis time.

Off

Simulink Design Verifier does not attempt to reduce the use of rational approximation
during analysis.

Command-Line Information
Parameter: DVReduceRationalApprox
Type: character array

Value: 'on' | 'off"'

Default: 'on'

Additional options for S-Functions

15-19



15 simulink Design Verifier Configuration Parameters

Design Verifier Pane: Block Replacements

Block replacements

Apply block replacements

List of block replacement rules (in order of priority):

Output model

File path of the output model:

In this section...

“Block Replacements Pane Overview” on page 15-20
“Apply block replacements” on page 15-20

“List of block replacement rules” on page 15-21
“File path of the output model” on page 15-22

Block Replacements Pane Overview

Specify options that control how Simulink Design Verifier preprocesses the models it
analyzes.

See Also

“Block Replacement”

Apply block replacements

Specify whether Simulink Design Verifier replaces blocks in a model before its analysis.

15-20



Design Verifier Pane: Block Replacements

Settings
Default: Off
Y1 On
Replaces blocks in a model before Simulink Design Verifier analyzes it.

Off
Does not replace blocks in a model before Simulink Design Verifier analyzes it.

Dependencies

This parameter enables List of block replacement rules and File path of the output
model.

Command-Line Information
Parameter: DVBlockReplacement
Type: character array

Value: 'on' | 'off'

Default: 'of '

See Also

“Block Replacement”

List of block replacement rules

Specify a list of block replacement rules that Simulink Design Verifier executes before its
analysis.

Settings
Default: <FactoryDefaultRules>

» Specify block replacement rules as a list delimited by spaces, commas, or carriage
returns.

* The Simulink Design Verifier software processes block replacement rules in the order
that you list them.

» If you specify the default value, Simulink Design Verifier uses its factory default block
replacement rules.

15-21



15 simulink Design Verifier Configuration Parameters

15-22

Dependency
This parameter is enabled when you select Apply block replacements.

Command-Line Information

Parameter: DVBlockReplacementRuleslList
Type: character array

Value: any valid rules

Default: '<FactoryDefaultRules>'

See Also

“Block Replacement”

File path of the output model

Specify a folder and file name for the model that results after applying block replacement
rules.

Settings
Default: $ModelName$ replacement

* Optionally, enter a path that is either absolute or relative to the path name specified in
Output folder.
* Enter a file name for the model that results after applying block replacement rules.

* $ModelName$ is a token that represents the model name.
Dependency
This parameter is enabled when you select Apply block replacements.

Command-Line Information

Parameter: DVBlockReplacementModelFileName
Type: character array

Value: any valid path and file name

Default: ' $ModelName$ replacement’

See Also

“Block Replacement”



Design Verifier Pane: Parameters

Design Verifier Pane: Parameters

Farameters

Enable parameter configuration [] Use parameter table

Parameter configuration file: sldv_params_template.m Browrse... ] ’ Edit...

Parameter table

Enable Disable Clear Highlight in Model
Use Name Constraint Value  Min Max Model Element
Find in Model Add from File Export to File

15-23



15 simulink Design Verifier Configuration Parameters

In this section...

“Parameters Pane Overview” on page 15-24
“Enable parameter configuration” on page 15-24
“Use parameter table” on page 15-26
“Parameter configuration file” on page 15-27
“Browse...” on page 15-28

“Edit...” on page 15-28

“Enable” on page 15-28

“Disable” on page 15-28

“Clear” on page 15-28

“Highlight in Model” on page 15-29

“Use” on page 15-29

“Name” on page 15-29

“Constraint” on page 15-30

“Value” on page 15-31

“Min” on page 15-31

“Max” on page 15-32

“Model Element” on page 15-32

“Find in Model” on page 15-33

“Add from File...” on page 15-33

“Export to File...” on page 15-33

Parameters Pane Overview

Specify options that control how Simulink Design Verifier uses parameter configurations
when analyzing models.

Enable parameter configuration

Specify whether the software uses parameter configurations when analyzing a model.
Select this option to treat parameters as variables in Simulink Design Verifier analysis.

To specify value ranges or constraints for parameters:

15-24



Design Verifier Pane: Parameters

* Use a parameter configuration file. Enter the file name in Parameter configuration
file.

* Use the Parameter Table. Select Use parameter table.
Settings

Default: Off

Y On

The Simulink Design Verifier software uses specified parameter configurations when
analyzing a model.

Off

The Simulink Design Verifier software does not use parameter configurations when
analyzing a model.

Tips

When you configure Simulink Design Verifier to treat parameters as variables in its
analysis, you cannot also use the analysis to extend existing test cases. In Analysis >
Design Verifier > Options, if you specify your model to extend existing test cases with a
Data file and apply parameter configurations with a Parameter configuration file or
the Parameter Table, when you attempt to perform Simulink Design Verifier analysis, the
software reports that your model is incompatible. This occurs because the existing test
cases do not include corresponding parameter values.

Dependency

This parameter enables Parameter configuration file.
Command-Line Information

Parameter: DVParameters

Type: character array

Value: 'on' | 'off"'

Default: 'off'

See Also

“Define Constraint Values for Parameters” on page 5-5

15-25



15 Ssimulink Design Verifier Configuration Parameters

15-26

Use parameter table

Enable the Parameter Table to specify value ranges or constraints for parameters.
Settings
Default: Off

Y1 On

Use the Parameter Table to define parameters as variables for Simulink Design
Verifier analysis.

Off

Do not use the Parameter Table to define parameters as variables for Simulink Design
Verifier analysis.

Tips

When you configure Simulink Design Verifier to treat parameters as variables in its
analysis, you cannot also use the analysis to extend existing test cases. In Analysis >
Design Verifier > Options, if you specify your model to extend existing test cases with a
Data file and apply parameter configurations with a Parameter configuration file or
the Parameter Table, when you attempt to perform Simulink Design Verifier analysis, the
software reports that your model is incompatible. This occurs because the existing test
cases do not include corresponding parameter values.

Dependency

When Enable parameter configuration is also selected, this parameter enables the
Parameter Table.

This parameter disables Parameter configuration file.

Command-Line Information
Parameter: DVParametersUseConfig
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

“Define Constraint Values for Parameters” on page 5-5



Design Verifier Pane: Parameters

Parameter configuration file
Specify a MATLAB function that defines parameter configurations for a model.
Settings

Default: sldv_params template.m

* The default file, sldv_params_template.m, is a template that you can edit and save.
The comments in the template explain the syntax you use to specify parameter
configurations.

* Click the Browse button to select an existing MATLAB file.
* Click the Edit button to open the specified MATLAB file in an editor.

Tips

When you configure Simulink Design Verifier to treat parameters as variables in its
analysis, you cannot also use the analysis to extend existing test cases. In Analysis >
Design Verifier > Options, if you specify your model to extend existing test cases with a
Data file and apply parameter configurations with a Parameter configuration file or
the Parameter Table, when you attempt to perform Simulink Design Verifier analysis, the
software reports that your model is incompatible. This occurs because the existing test
cases do not include corresponding parameter values.

Dependency

This parameter is enabled by Enable parameter configuration. This parameter is
disabled by Use parameter table.

Command-Line Information

Parameter: DVParametersConfigFileName
Type: character array

Value: any valid MATLAB file

Default: 'sldv_params template.m'

See Also

“Define Constraint Values for Parameters” on page 5-5

15-27



15 simulink Design Verifier Configuration Parameters

15-28

Browse...
Browse to the parameter configuration file.
Dependency

This button is enabled by Enable parameter configuration. This button is disabled by
Use parameter table.

Ed itl am
Edit the current parameter configuration file.
Dependency

This button is enabled by Enable parameter configuration. This button is disabled by
Use parameter table.

Enable

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Disable

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Clear

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.



Design Verifier Pane: Parameters

Highlight in Model

Dependency
When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Use

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Use column specifies whether to use this rows’s named parameter and specified
constraint in the current parameter configuration.

Settings
Default: Off
Y1 On

Use this parameter and its specified constraint in the current parameter
configuration.

Off

Do not use this parameter and its specified constraint in the current parameter
configuration.

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-5

Name

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

15-29



15 simulink Design Verifier Configuration Parameters

15-30

The Name column displays the name of the parameter.

Settings

Default: empty

Tips

To load the model parameters into the Parameter Table, at the bottom of the table, click
Find in Model. When possible, the software automatically generates constraint values
for each parameter.

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-5

Constraint

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Constraint column contains the specified value range for the parameter.
Settings

Default: empty

Tips

To autogenerate parameter constraints, at the bottom of the Parameter Table, click Find
in Model.

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.



Design Verifier Pane: Parameters

See Also

“Define Constraint Values for Parameters” on page 5-5

Value

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Value column contains the value of the parameter in the base workspace. If the
parameter is defined in a Simulink data dictionary that is linked to the model, the Value
column contains the value of the parameter in the data dictionary.

Settings
Default: empty
Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-5

Min

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

For parameters of type Simulink.Parameter with a specified minimum value, the Min
column contains the specified minimum value for the parameter.

Settings
Default: empty
Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

15-31



15 simulink Design Verifier Configuration Parameters

15-32

See Also

* “Define Constraint Values for Parameters” on page 5-5
* Simulink.Parameter

Max

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

For parameters of type Simulink.Parameter with a specified maximum value, the Max
column contains the specified maximum value for the parameter.

Settings
Default: empty
Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

* “Define Constraint Values for Parameters” on page 5-5
* Simulink.Parameter

Model Element

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Model Element column displays the path to the model elements where the
parameter is used.

Settings

Default: empty



Design Verifier Pane: Parameters

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-5

Find in Model

The software searches your model for parameters that you can configure and loads them
in the Parameter Table. If your model uses a configuration reference, Simulink Design
Verifier does not support the search for parameters when using the Find in Model
button. For more information, see “About Configuration References” (Simulink).
Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Add from File...

Adds parameters to the Parameter Table from a list stored in a file.
Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Export to File...
Exports the current parameters in the Parameter Table to a file.
Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

15-33



15 simulink Design Verifier Configuration Parameters

Design Verifier Pane: Test Generation

Test generation

Test generation target: Model »
Model coverage objectives: !'MCDC L|
Test conditions: IUse local settings -
Test objectives: |Use local settings ac]

Maximum test case steps: |500

Test suite optimization: !CnmbinedDbjecﬁves

Existing test cases

| | Extend existing test cases:
Data file: | <empty>

* Ignore objectives satisfied by existing test cases

Existing coverage data

[_| Ignore objectives satisfied in existing coverage data:

Coverage data file: <emply>

Coverage objective filter

[_| Ignore objective based on filter:

Coverage filter file: <empily>

Relational Boundary Objectives

1
5'[ﬁ Include relational boundary objectives

Browse...

Browse...

Browse...

Floating point absolute tolerance: 1e-05  Floating point relative tolerance: 0.01



Design Verifier Pane: Test Generation

In this section...

“Test Generation Pane Overview” on page 15-35

“Test generation target” on page 15-36

“Model coverage objectives” on page 15-36

“Test conditions” on page 15-37

“Test objectives” on page 15-38

“Maximum test case steps” on page 15-39

“Test suite optimization” on page 15-40

“Extend existing test cases” on page 15-41

“Data file” on page 15-42

“Browse...” on page 15-43

“Ignore objectives satisfied by existing test cases” on page 15-43
“Ignore objectives satisfied in existing coverage data” on page 15-44
“Coverage data file” on page 15-45

“Browse...” on page 15-45

“Ignore objectives based on filter” on page 15-45

“Coverage filter file” on page 15-46

“Browse...” on page 15-47

“Include relational boundary objectives” on page 15-47
“Floating point absolute tolerance” on page 15-48

“Floating point relative tolerance” on page 15-49

Test Generation Pane Overview

Specify options that control how Simulink Design Verifier generates tests for the models it
analyzes.

See Also

“Workflow for Test Case Generation” on page 7-4

15-35



15 simulink Design Verifier Configuration Parameters

15-36

Test generation target

Specify the target for test generation.

* Default: Model generates test cases for the model.

* Code Generated as Top Model generates tests for code generated as top model.

* Code Generated as Model Reference generates tests for code generated as
model reference.

Command-Line Information

Parameter: DVTestgenTarget

Type: character array

Value: 'Model' | ‘GeneratedCode’ | ‘GeneratedModelReferenceCode’ |

See Also

“Code Coverage Test Generation”“Generate Test Cases for Embedded Coder Generated
Code” on page 7-29

Model coverage objectives

Specify the type of model coverage that Simulink Design Verifier attempts to achieve.
Settings

Default: Condition Decision

None

Generates test cases that achieve only the custom objectives that you specified in
your model using, for example, Test Objective blocks.

Decision

Generates test cases that achieve decision coverage. For more information, see
“Decision” on page 7-32.

Condition/Decision

Generates test cases that achieve condition and decision coverage. For more
information, see “Condition” on page 7-32.



Design Verifier Pane: Test Generation

MCDC

Generates test cases that achieve modified condition/decision coverage (MCDC). For
more information, see “MCDC” on page 7-33.

When you set Model coverage objectives to MCDC, Simulink Design Verifier
automatically enables every coverage objective for decision coverage and condition
coverage as well. Similarly, enabling coverage for condition coverage causes every
decision and condition coverage outcome to be enabled.

Command-Line Information

Parameter: DVModelCoverageObjectives

Type: character array

Value: 'None' | 'Decision' | 'ConditionDecision' | 'MCDC'
Default: 'ConditionDecision'

See Also

“Workflow for Test Case Generation” on page 7-4

Test conditions

Specify whether Test Condition blocks in your model are enabled or disabled.
Settings
Default: Use local settings

Use local settings

Enables or disables Test Condition blocks based on the value of the Enable parameter
of each block. If a block's Enable parameter is selected, the block is enabled;
otherwise, the block is disabled.

Enable all

Enables all Test Condition blocks in the model regardless of the settings of their
Enable parameters.

Disable all

Disables all Test Condition blocks in the model regardless of the settings of their
Enable parameters.

15-37



15 simulink Design Verifier Configuration Parameters

15-38

Command-Line Information

Parameter: DVTestConditions

Type: character array

Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UselLocalSettings'

See Also

* Test Condition
*  “Workflow for Test Case Generation” on page 7-4

Test objectives

Specify whether Test Objective blocks in your model are enabled or disabled.
Settings

Default: Use local settings

Use local settings

Enables or disables Test Objective blocks based on the value of the Enable parameter
of each block. If a block's Enable parameter is selected, the block is enabled;
otherwise, the block is disabled.

Enable all

Enables all Test Objective blocks in the model regardless of the settings of their
Enable parameters.

Disable all

Disables all Test Objective blocks in the model regardless of the settings of their
Enable parameters.

Command-Line Information

Parameter: DVTestObjectives

Type: character array

Value: 'UseLocalSettings' | 'EnableAll"' | 'DisableAll’
Default: 'UselLocalSettings'

See Also

» Test Objective



Design Verifier Pane: Test Generation

* “Workflow for Test Case Generation” on page 7-4

Maximum test case steps

Specify the maximum number of simulation steps Simulink Design Verifier takes when
attempting to satisfy a test objective.

The analysis uses the Maximum test case steps parameter during certain parts of the
test-generation analysis to bound the number of steps that test generation uses. When
you set a small value for this parameter, the parts of the analysis that are bounded
complete in less time. When you set a larger value, the bounded parts of the analysis take
longer, but it is possible for these parts of the analysis to generate longer test cases.

To achieve the best performance, set the Maximum test case steps parameter to a
value just large enough to bound the longest required test case, even if the test cases that
are ultimately generated are longer than this value.

When you also specify LongTestcases for the Test suite optimization parameter, the
analysis uses successive passes of test generation to extend a potential test case so that it
satisfies more objectives. When this happens, the analysis applies the Maximum test
case steps parameter to each individual iteration of test generation.

Settings

Default: 10000

You can specify a value that represents the maximum number of simulation steps
Simulink Design Verifier takes when attempting to satisfy a test objective.

Command-Line Information
Parameter: DVMaxTestCaseSteps
Type: int32

Value: any valid value

Default: 10000

See Also

“Workflow for Test Case Generation” on page 7-4

15-39



15 simulink Design Verifier Configuration Parameters

15-40

Test suite optimization

Specify the optimization strategy to use when generating test cases.
Settings

Default: CombinedObjectives (Nonlinear Extended)

CombinedObjectives (Nonlinear Extended)

Analyzes the model using a variation of the CombinedObjectives optimization. This
optimization includes improved support for nonlinear arithmetic.

LargeModel (Nonlinear Extended)

Analyzes the model using a variation of the LargeModel optimization. This
optimization includes improved support for nonlinear arithmetic.

IndividualObjectives

Maximizes the number of test cases in a suite by generating cases that each address
only one test objective. Each test case tends to be short, i.e., it includes only a few
time steps.

LongTestcases

Combines test cases to create a smaller number of test cases. This strategy generates
fewer, but longer, test cases that each satisfy multiple test objectives and creates a
more efficient analysis and easier-to-review results.

CombinedObjectives

Minimizes the number of test cases in a suite by generating cases that address more
than one test objective. Each test case tends to be long, i.e., it includes many time
steps.

LargeModel

Minimizes the number of test cases in a suite by generating cases that address more
than one test objective. This strategy is tailored for large, complex models;
consequently, it tends to use all the time that the Maximum analysis time option
allots.

Tip

If you want to identify unsatisfiable objectives, set this option to
IndividualObjectives. The IndividualObjectives strategy analyzes each
objective independently, so it has a better chance of identifying unsatisfiable objectives.



Design Verifier Pane: Test Generation

If you have many test objectives or you want to create a smaller number of test cases,
select LongTestcases for a more efficient analysis and an easy-to-review report.

If your model has both of the following characteristics:

* Nonlinearities, such as those that result from multiplying or dividing the model’s input
signals

* Numerous test objectives, such as those that result when using blocks that receive
model coverage

set this option to LargeModel (Nonlinear Extended). The LargeModel and
LargeModel (Nonlinear Extended) strategies perform an analysis that is tailored to
large, complex models. However, these strategies tend to use all the time that the
Maximum analysis time option allots.

Command-Line Information

Parameter: DVTestSuiteOptimization

Type: character array

Value: 'CombinedObjectives (Nonlinear Extended)' | 'LargeModel
(Nonlinear Extended)' | 'IndividualObjectives' | 'LongTestcases'
|'CombinedObjectives' | 'LargeModel’ |

Default: 'CombinedObjectives (Nonlinear Extended)'

See Also

“Workflow for Test Case Generation” on page 7-4

Extend existing test cases

Extend the Simulink Design Verifier analysis by importing test cases logged from a
harness model or a closed-loop simulation model.

Settings
Default: Off
Y1 On
Extends the analysis by using the logged test cases specified in Data file.

Off
Does not extend the analysis.

15-41



15 simulink Design Verifier Configuration Parameters

15-42

Tips

When Simulink Design Verifier is configured to apply parameters specified in Parameter
configuration file, you cannot use the Extend existing test cases option. If you specify
your model to extend existing test cases with a Data file and apply parameter
configurations with a Parameter configuration file, when you attempt to perform
Simulink Design Verifier analysis, the software reports that your model is incompatible.
This occurs because the existing test cases do not include corresponding parameter
values.

Dependency

This parameter enables Data file and Ignore objectives satisfied by existing test
cases.

Command-Line Information
Parameter: DVExtendExistingTests
Type: character array

Value: 'on' | 'off'

Default: 'of '

See Also

* “When to Extend Existing Test Cases” on page 8-2
* “Common Workflow for Extending Existing Test Cases” on page 8-3

Data file

Specify a folder and file name for the MAT-file that contains the logged test case data.
Settings
Default: '

* Specify a folder and file name for the MAT-file that contains the logged test case data
in an sldvData object.

* Click the Browse button to navigate to and select an existing file.
Tips

When you configure Simulink Design Verifier to treat parameters as variables in its
analysis, you cannot also use the analysis to extend existing test cases. In Analysis >



Design Verifier Pane: Test Generation

Design Verifier > Options, if you specify your model to extend existing test cases with a
Data file and apply parameter configurations with a Parameter configuration file or
the Parameter Table, when you attempt to perform Simulink Design Verifier analysis, the
software reports that your model is incompatible. This occurs because the existing test
cases do not include corresponding parameter values.

Command-Line Information
Parameter: DVExistingTestFile
Type: character array

Value: any valid path and file name
Default: '

See Also

“Simulink Design Verifier Data Files” on page 13-10

Browse...
Browse to the MAT-file that contains the logged test case data.
Dependency

This button is enabled by Extend existing test cases.

Ignore objectives satisfied by existing test cases
Ignore the coverage objectives satisfied by the logged test cases in Data file.
Settings

Default: On

Y On

Generates results, but excludes coverage objectives satisfied by logged test cases in
Data file from the analysis.

Off

Generates results for the full test suite, including coverage objectives satisfied by the
logged test cases in Data file.

15-43



15 simulink Design Verifier Configuration Parameters

15-44

Command-Line Information

Parameter: DVIgnoreExistTestSatisfied
Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

* “Extend Test Cases for Closed-Loop System” on page 8-12
* “Simulink Design Verifier Data Files” on page 13-10

Ignore objectives satisfied in existing coverage data

Specify to analyze the model, ignoring satisfied coverage objectives, as specified in
Coverage data file.

Settings
Default: Off
Yl On
Ignores satisfied coverage objectives in Coverage data file during the analysis.

Off
Generates results for all coverage objectives, including those in Coverage data file.

Dependency
This parameter enables Coverage data file.

Command-Line Information
Parameter: DVIgnoreCovSatisfied
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

* “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-14
* “Test Case Extension”



Design Verifier Pane: Test Generation

Coverage data file

Specify a folder and file name for the file that contains data about satisfied coverage
objectives.

Settings
Default: '

» Specify the name of the folder and file name that contains the satisfied coverage
objectives data

Click the Browse button to select an existing MATLAB file.

Command-Line Information
Parameter: DVCoverageDataFile
Type: character array

Value: any valid path and file name
Default: '

See Also

* “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-14
» “Test Case Extension”

Browse...

Browse to the file that contains data about satisfied coverage objectives.
Dependency

This button is enabled by Ignore objectives satisfied in existing coverage data.

Ignore objectives based on filter

Specify to analyze the model, ignoring the coverage objectives in the Coverage filter
file.

Settings
Default: Off

15-45



15 simulink Design Verifier Configuration Parameters

15-46

Yl On
Ignores coverage objectives in the Coverage filter file during the analysis.

Off
Generates results for all coverage objectives, including those in Coverage filter file.

Dependency
This parameter enables Coverage filter file.

Command-Line Information
Parameter: DVCovFilter
Type: character array

Value: 'on' | 'off'
Default: 'of '

See Also

“Coverage Filtering” (Simulink Coverage)

Coverage filter file

Specify a folder and file name for the file that contains the coverage objectives you want
to ignore. The Coverage filter file specifies model objects to exclude from model
coverage during test case generation.

Settings
Default: '

» Specify the name of the folder and file name that contains the coverage objectives you
want to ignore.

Click the Browse button to select an existing MATLAB file.

Command-Line Information
Parameter: DVCovFilterFileName
Type: character array

Value: any valid path and file name
Default: '’



Design Verifier Pane: Test Generation

See Also

“Coverage Filter Rules and Files” (Simulink Coverage)

Browse...
Browse to the file that contains the coverage objectives you want to ignore.
Dependency

This button is enabled by Ignore objectives based on filter.

Include relational boundary objectives

Specify generation of test cases that satisfy relational boundary objectives. The objective
applies to blocks such as Relational Operator that have an explicit or implicit relational
operation. The tests check the relational operations in these blocks with:

* Equal operand values for integer and fixed-point operands.

* Operand values within a certain tolerance for all operands. For integer and fixed-point
operands, the tolerance is fixed. For floating-point operands, the tolerance is
computed using the inputs and a tolerance value that you specify. If you do not specify
a tolerance value, the default values are used.

Settings
Default: Off
Yl On
For supported blocks, generated test cases satisfy relational boundary objectives.

Off
Generated test cases do not satisfy relational boundary objectives.

Dependencies

If you select this option, you can use default values or specify values for:

» “Floating point absolute tolerance” on page 15-48

15-47



15 simulink Design Verifier Configuration Parameters

15-48

* “Floating point relative tolerance” on page 15-49

Command-Line Information

Parameter: DVIncludeRelationalBoundary
Type: character array

Value: 'on'|'off'

Default: 'of '

See Also

* “Relational Boundary” on page 7-33

* “Model Objects That Receive Coverage” (Simulink Coverage)

Floating point absolute tolerance

Specity a value for absolute tolerance used in relational boundary tests. The relational
boundary objectives apply to blocks such as Relational Operator that have an explicit or
implicit relational operation. The tolerance value applies only if the relational operations
in those blocks use floating point operands.

» For integer operands, the tolerance value is fixed at 1.

» For fixed-point operands, the tolerance value is the least significant bit.
Settings
Default: 1.0000e-05

For supported blocks, the relational boundary tests check the relational operations in the
block with operand values that differ by a certain tolerance. The software calculates the
tolerance value using the following formula

max(absTol, relTol* max(|lhs|,|rhs]|)), where:

* absTol is the absolute tolerance value that you specify.
* relTol is a relative tolerance value that you can specify.
* lhs is the left operand and rhs the right operand.

* max(x,y) returns x or y, whichever is greater.



Design Verifier Pane: Test Generation

Dependencies

To enter a value for this option, select “Include relational boundary objectives” on page
15-47.

Command-Line Information
Parameter: DVAbsoluteTolerance
Type: double

Value: Any valid value

Default: 1.0000e-05

See Also

* “Relational Boundary” on page 7-33
* “Model Objects That Receive Coverage” (Simulink Coverage)

Floating point relative tolerance

Specity a value for relative tolerance used in relational boundary tests. The relational
boundary objectives apply to blocks such as Relational Operator that have an explicit or
implicit relational operation. The tolerance value applies only if the relational operations
in those blocks use floating point operands.

» For integer operands, the tolerance value is fixed at 1.

* For fixed-point operands, the tolerance value is the least significant bit.
Settings
Default: 0.01

For supported blocks, the relational boundary tests check the relational operations in the
block with operand values that differ by a certain tolerance. The software calculates the
tolerance value using the following formula

max (absTol, relTol* max(|lhs|,|rhs]|)), where:

* absTol is an absolute tolerance value that you can specify.
* relTol is the relative tolerance value that you specify.

* lhs is the left operand and rhs the right operand.

* max(x,y) returns x or y, whichever is greater.

15-49



15 simulink Design Verifier Configuration Parameters

Dependencies

To enter a value for this option, select “Include relational boundary objectives” on page
15-47.

Command-Line Information
Parameter: DVRelativeTolerance
Type: double

Value: Any valid value

Default: 0.01

See Also

* “Relational Boundary” on page 7-33
* “Model Objects That Receive Coverage” (Simulink Coverage)

See Also

More About

. “Design Verifier Pane” on page 15-11
. “Generate Test Cases for Model Decision Coverage” on page 7-5
. “Workflow for Test Case Generation” on page 7-4

15-50



Design Verifier Pane: Design Error Detection

Design Verifier Pane: Design Error Detection

Design Error Detection
Dead logic
Identify active logic
#| Integer overflow
Division by zero
Check specified intermediate minimum and maximum values

Out of bound array access

In this section...
“Design Error Detection Pane Overview” on page 15-51

“Dead logic” on page 15-51

“Identify active logic” on page 15-52

“Integer overflow” on page 15-53

“Division by zero” on page 15-54

“Check specified intermediate minimum and maximum values” on page 15-54

“Out of bound array access” on page 15-55

Design Error Detection Pane Overview

Specify options that control how Simulink Design Verifier detects runtime errors in the
models it analyzes.

Dead logic
Specify whether to analyze your model for dead logic.
Settings

Default: Off

15-51



15 simulink Design Verifier Configuration Parameters

15-52

Y1 On

Reports dead logic in your model.

Off
Does not report dead logic in your model.

Dependency

Design error detection for dead logic is standalone analysis. When you enable Dead
logic, Active logic is enabled and other design error detection options are disabled.

Command-Line Information
Parameter: DVDetectDeadlLogic
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

“Dead Logic Detection” on page 6-10

Identify active logic

Specify whether to analyze your model for active logic, in addition to dead logic.
Settings

Default: Off

Y1 On

Reports active logic in your model.

Off
Does not report active logic in your model.

Dependency

To enable Identify active logic, select Dead logic.



Design Verifier Pane: Design Error Detection

Design error detection for dead logic is standalone analysis. When you enable Dead
logic, Identify active logic is enabled and other design error detection options are
disabled.

Command-Line Information
Parameter: DVDetectActivelogic
Type: character array

Value: 'on' | 'off"'

Default: 'off'

See Also

“Dead Logic Detection” on page 6-10

Integer overflow
Specify whether to analyze your model for integer and fixed-point data overflow errors.
Settings
Default: On
Y1 On
Reports integer or fixed-point data overflow errors in your model.

Off
Does not report integer or fixed-point data overflow errors in your model.

Dependency
This parameter is disabled by Dead logic.

Command-Line Information

Parameter: DVDetectIntegerOverflow
Type: character array

Value: 'on' | 'off'

Default: 'on’

See Also

“Static Run-Time Error Detection”

15-53



15 simulink Design Verifier Configuration Parameters

15-54

Division by zero
Specify whether to analyze your model for division-by-zero errors.
Settings
Default: On
Y1 On
Reports division-by-zero errors in your model.

Off
Does not report division-by-zero errors in your model.

Dependency
This parameter is disabled by Dead logic.

Command-Line Information
Parameter: DVDetectDivisionByZero
Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

“Static Run-Time Error Detection”

Check specified intermediate minimum and maximum values

Specify whether to check that the intermediate and output signals in your model are
within the range of user-specified minimum and maximum constraints.

Settings
Default: Off

Y| On

Checks that intermediate and output signals are within the range of user-specified

minimum and maximum constraints.



Design Verifier Pane: Design Error Detection

Off

Does not check that intermediate and output signals are within the range of user-

specified minimum and maximum constraints.
Dependency
This parameter is disabled by Dead logic.

Command-Line Information
Parameter: DVDesignMinMaxCheck
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

“Design Range Checks”

Out of bound array access

Specify whether to analyze your model for out of bound array access errors.

Settings
Default: Off
Y1 On
Reports out of bound array access errors in your model.

Off
Does not report out of bound array access errors in your model.

Dependency
This parameter is disabled by Dead logic.

Command-Line Information
Parameter: DVDetectOutOfBounds
Type: character array

15-55



15 simulink Design Verifier Configuration Parameters

Value: 'on' | 'off'
Default: 'of '

See Also

“Detect Out of Bound Array Access Errors” on page 6-36
* “Static Run-Time Error Detection”

15-56



Design Verifier Pane: Property Proving

Design Verifier Pane: Property Proving

Property proving

Assertion blocks: [Enable all V]
Proof assumptions: [Enable all v]
Strategy: [Find‘u’i olation - ]

Maximum violation steps: 20

In this section...

“Property Proving Pane Overview” on page 15-57
“Assertion blocks” on page 15-57

“Proof assumptions” on page 15-58

“Strategy” on page 15-59

“Maximum violation steps” on page 15-60

Property Proving Pane Overview

Specify options that control how Simulink Design Verifier proves properties for the
models it analyzes.

See Also

* “What Is Property Proving?” on page 12-2

*  “Workflow for Proving Model Properties” on page 12-4

* “Prove Properties in a Model” on page 12-5

Assertion blocks

Specify whether Assertion blocks in your model are enabled or disabled.
Settings

Default: Use local settings

15-57



15 simulink Design Verifier Configuration Parameters

15-58

Use local settings

Enables or disables Assertion blocks based on the value of the Enable parameter of
each block. If a block's Enable parameter is selected, the block is enabled; otherwise,
the block is disabled.

Enable all

Enables all Assertion blocks in the model regardless of the settings of their Enable
parameters.

Disable all

Disables all Assertion blocks in the model regardless of the settings of their Enable
parameters.

Command-Line Information

Parameter: DVAssertions

Type: character array

Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UselLocalSettings'

See Also

* Assertion
* “Workflow for Proving Model Properties” on page 12-4
* “Prove Properties in a Model” on page 12-5

Proof assumptions

Specify whether Proof Assumption blocks in your model are enabled or disabled.
Settings

Default: Use local settings

Use local settings

Enables or disables Proof Assumption blocks based on the value of the Enable
parameter of each block. If a block's Enable parameter is selected, the block is
enabled; otherwise, the block is disabled.

Enable all

Enables all Proof Assumption blocks in the model regardless of the settings of their
Enable parameters.



Design Verifier Pane: Property Proving

Disable all

Disables all Proof Assumption blocks in the model regardless of the settings of their
Enable parameters.

Command-Line Information

Parameter: DVProofAssumptions

Type: character array

Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UselLocalSettings'

See Also

* Proof Assumption
» “Workflow for Proving Model Properties” on page 12-4
* “Prove Properties in a Model” on page 12-5

Strategy

Specify the strategy that Simulink Design Verifier uses when proving properties.
Settings

Default: Prove

Prove
Performs property proofs.
FindViolation

Searches only for property violations within the number of simulation steps specified
by the Maximum violation steps option.

ProveWithViolationDetection

Searches first for property violations within the number of simulation steps specified
by the Maximum violation steps option; then it attempts to prove properties for
which it failed to detect a violation. This strategy is a combination of the Prove and
FindViolation strategies.

Dependency

Selecting FindViolation or ProveWithViolationDetection enables the Maximum
violation steps parameter.

15-59



15 simulink Design Verifier Configuration Parameters

15-60

Command-Line Information

Parameter: DVProvingStrategy

Type: character array

Value: 'Prove' | 'FindViolation' | 'ProveWithViolationDetection'
Default: 'Prove’

See Also

* “What Is Property Proving?” on page 12-2
* “Workflow for Proving Model Properties” on page 12-4
* “Prove Properties in a Model” on page 12-5

Maximum violation steps

Specify the maximum number of simulation steps over which Simulink Design Verifier
searches for property violations.

Settings
Default: 20

The Simulink Design Verifier software does not search beyond the maximum number of
simulation steps that you specify. Therefore, it cannot identify violations that might occur
later in a simulation.

Dependency

This parameter is enabled when you set Strategy to FindViolation or
ProveWithViolationDetection.

Command-Line Information
Parameter: DVMaxViolationSteps
Type: int32

Value: any valid value

Default: 20

See Also

* “What Is Property Proving?” on page 12-2
* “Workflow for Proving Model Properties” on page 12-4



Design Verifier Pane: Property Proving

* “Prove Properties in a Model” on page 12-5

15-61



15 simulink Design Verifier Configuration Parameters

Design Verifier Pane: Results

Data file options
+| Save test data to file
Data file name: [ModelName’_sldvdata
Include expected output values

Randomize data that do not affect the outcome

Harness model options

Generate separate hamess model after analysis
Harness model file name:

Reference input model in generated harness

Simulink Test options

Test File name: EModelNamed_test

Test Harness name: |$MedelNamed_sldvharmess

In this section...

“Results Pane Overview” on page 15-63

“Save test data to file” on page 15-63

“Data file name” on page 15-64

“Include expected output values” on page 15-64

“Randomize data that do not affect the outcome” on page 15-65
“Generate separate harness model after analysis” on page 15-67
“Harness model file name” on page 15-68

“Reference input model in generated harness” on page 15-68
“Test File Name” on page 15-70

15-62




Design Verifier Pane: Results

In this section...

“Test Harness Name” on page 15-70

Results Pane Overview

Specify options that control how Simulink Design Verifier handles the results that it
generates.

See Also

“Results Interpretation and Use”

Save test data to file
Save the test data that the Simulink Design Verifier analysis generates to a MAT-file.
Settings
Default: On
Yl On
Saves the test data that the analysis generates to a MAT-file.

Off
Does not save the test data that the analysis generates.

Dependency
This parameter enables Data file name.

Command-Line Information
Parameter: DVSaveDataFile
Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

* “Simulink Design Verifier Data Files” on page 13-10

15-63



15 simulink Design Verifier Configuration Parameters

15-64

* “Results Interpretation and Use”

Data file name

Specify a folder and file name for the MAT-file that contains the data generated during the
analysis, stored in an sldvData structure.

Settings
Default: $ModelName$ sldvdata

* Optionally, enter a path that is either absolute or relative to the path name specified in
Output folder.

* Enter a file name for the MAT-file.

* $ModelName$ is a token that represents the model name.
Dependency

This parameter is enabled by Save test data to file.
Command-Line Information

Parameter: DVDataFileName

Type: character array

Value: any valid path and file name

Default: ' $ModelName$ sldvdata’

See Also

* “Simulink Design Verifier Data Files” on page 13-10
* “Results Interpretation and Use”

Include expected output values

Simulate the model using test case signals and include the output values in the Simulink
Design Verifier data file.

Settings

Default: Off



Design Verifier Pane: Results

Yl On
Simulates the model using the test case signals that the analysis produces. For each
test case, the software collects the simulation output values associated with Outport
blocks in the top-level system and includes those values in the MAT-file that it
generates.
Off
Does not simulate the model and collect output values for inclusion in the MAT-file
that the analysis generates.
Tips
* The TestCases.expectedOutput subfield of the MAT-file contains the output
values. For more information, see “Contents of sldvData Structure” on page 13-10.

* When Include expected output values is enabled, Simulink Design Verifier
successively simulates the model using each test case that it generates. Enabling this
option requires more time for Simulink Design Verifier to complete its analysis.

Dependency

This parameter is enabled by Save test data to file.
Command-Line Information

Parameter: DVSaveExpectedOutput

Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

* “Simulink Design Verifier Data Files” on page 13-10
* “Results Interpretation and Use”

Randomize data that do not affect the outcome

Specify whether to use random values instead of zeros for input signals that have no
impact on test or proof objectives.

15-65



15 simulink Design Verifier Configuration Parameters

15-66

Settings

Default: Off

Y1 On

Assigns random values to test case or counterexample signals that do not affect the
outcome of test or proof objectives in a model. This option can enhance traceability
and improve your regression tests.

Off

Assigns zeros to test case or counterexample signals that do not affect the outcome of
test or proof objectives in a model.

Tips

This option replaces default data values with random values when the Simulink Design
Verifier internal analysis engine does not specify a value. When a value does not
influence the satisfaction of a test or proof objective, the generated analysis report
indicates that value with a dash (-).

Simulink Design Verifier generated analysis reports show the setting of this option.

Enable this option to enhance traceability when simulating test cases or
counterexamples. For instance, consider the following model:

Il
>
(z ) > ;:-:}\ > 1)
In2 S — outt
Switch
In3

Only the signal entering the Switch block control port impacts its decision coverage. If
the Randomize data that does not affect outcome parameter is off, Simulink
Design Verifier uses zeros to represent the signals from In1 and In3. When inspecting
the results from test case or counterexample simulations, it is unclear which of these
signals passes through the Switch block because they have the same value. But if the
Randomize data that does not affect outcome parameter is on, the software uses



Design Verifier Pane: Results

unique values to represent each of those signals. In this case, it is easier to determine
which signal passes through the Switch block.

Dependency
This parameter is enabled by Save test data to file.

Command-Line Information
Parameter: DVRandomizeNoEffectData
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

* “Simulink Design Verifier Data Files” on page 13-10
* “Results Interpretation and Use”

Generate separate harness model after analysis
Create a harness model generated by the Simulink Design Verifier analysis.
Settings
Default: Off
Yl On
Saves the harness model that Simulink Design Verifier generates as a model file.

Off
Does not save the harness model that Simulink Design Verifier generates.

Dependency
This parameter enables Harness model file name.

Command-Line Information
Parameter: DVSaveHarnessModel
Type: character array

Value: 'on' | 'off'

15-67



15 simulink Design Verifier Configuration Parameters

15-68

Default: 'off'

See Also

* “Simulink Design Verifier Harness Models” on page 13-17
* “Results Interpretation and Use”

Harness model file name

Specify a folder and file name for the harness model.
Settings

Default: $ModelName$ harness

* Optionally, enter a path that is either absolute or relative to the path name specified in
Output folder.

* Enter a file name for the harness model.

* $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled by Generate separate harness model after analysis.
Command-Line Information

Parameter: DVHarnessModelFileName

Type: character array

Value: any valid path and file name

Default: ' $ModelName$ harness'

See Also

* “Simulink Design Verifier Harness Models” on page 13-17
» “Results Interpretation and Use”

Reference input model in generated harness

Use a Model block to reference the model to run in the harness model.



Design Verifier Pane: Results

Settings
Default: Off
4| On
Uses a Model block to reference the model to run in the harness model.

Off
Uses a copy of the model in the harness model.
Tips

* If the Test Unit in the harness model is a subsystem, the values of the Simulink
simulation optimization parameters on the Configuration Parameters dialog box can
affect the coverage results.

Note The simulation optimization parameters are on the following Configuration
Parameters dialog box panes:

* Optimization pane

* Optimization > Signals and Parameters pane

* Optimization > Stateflow pane

* On the Design Verifier > Parameters pane, if you select the Apply parameters
parameter, Simulink Design Verifier uses a subsystem that contains a copy of the
original model in the harness model, even if you select Reference input model in
generated harness.

Command-Line Information
Parameter: DVModelReferenceHarness
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

* “Simulink Design Verifier Harness Models” on page 13-17
* “Results Interpretation and Use”

15-69



15 simulink Design Verifier Configuration Parameters

15-70

Test File Name

Name and path for test file name in Simulink Test
Settings

Default: $ModelName$ test

* Enter a file name for the test file containing Simulink Design Verifier results.
* $ModelName$ is a token that represents the model name.

* You can enter an absolute path, or a path relative to that specified by Output folder
in the Design Verifier pane.

Dependency
This parameter is visible and enabled with a Simulink Test license.

Command-Line Information
Parameter: DVS1TestFileName
Type: character array

Value: any valid path and file name
Default: ' $ModelName$ test'

See Also

* “Test Models Using Inputs Generated by Simulink Design Verifier” (Simulink Test)

Test Harness Name

Name of the test harness in Simulink Test
Settings

Default: $Mode1lName$ sldvharness

* Enter a valid name for the test harness built to simulate Simulink Design Verifier test
cases. The test harness corresponds to the test file specified by the parameter Test
File name.

* The $ModelName$ token represents the model name.
* Enter a valid MATLAB identifier for the test harness name.



Design Verifier Pane: Results

Dependency
This parameter is visible and enabled with a Simulink Test license.

Command-Line Information
Parameter: DVS1TestHarnessName
Type: character array

Value: any valid file name

Default: ' $ModelName$ sldvharness'

See Also

* “Test Models Using Inputs Generated by Simulink Design Verifier” (Simulink Test)

15-71



15 simulink Design Verifier Configuration Parameters

Design Verifier Pane: Report

Report

[] Generate report of the results

Generate additional report in PDF format
Report file name:

Include screen shots of properties

Display report

15-72

In this section...

“Report Pane Overview” on page 15-72

“Generate report of the results” on page 15-72

“Generate additional report in PDF format” on page 15-73
“Report file name” on page 15-74

“Include screen shots of properties” on page 15-75
“Display report” on page 15-76

Report Pane Overview
Specify options that control how Simulink Design Verifier reports its results.

See Also

» “Simulink Design Verifier Reports” on page 13-28
* “Results Interpretation and Use”

Generate report of the results
Generate and save a Simulink Design Verifier report.
Settings

Default: Off




Design Verifier Pane: Report

Yl On
Saves the HTML report that Simulink Design Verifier generates.

Off
Does not generate a Simulink Design Verifier report.

Dependencies

When this parameter is enabled, you must enable Generate separate harness model
after analysis.

This parameter enables the following parameters:

* Generate additional report in PDF format
* Report file name

* Include screen shots of properties

* Display report

Command-Line Information
Parameter: DVSaveReport
Type: character array

Value: 'on' | 'off'
Default: 'off'

See Also

» “Simulink Design Verifier Reports” on page 13-28

* “Results Interpretation and Use”

Generate additional report in PDF format

Save an additional PDF version of the Simulink Design Verifier report.
Settings

Default: Off

Yl On
Saves an additional PDF version of the Simulink Design Verifier report.

15-73



15 simulink Design Verifier Configuration Parameters

15-74

Off
Does not save an additional PDF version of the Simulink Design Verifier report.

Dependency
This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVReportPDFFormat
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

* “Simulink Design Verifier Reports” on page 13-28
* “Results Interpretation and Use”

Report file name

Specity a folder and file name for the report that Simulink Design Verifier analysis
generates.

Settings
Default: $ModelName$ report

* Optionally, enter a path that is either absolute or relative to the path name specified in
Output folder.
* Enter a file name for the report that the analysis generates.

* $ModelName$ is a token that represents the model name.
Dependency

This parameter is enabled by Generate report of the results.
Command-Line Information

Parameter: DVReportFileName
Type: character array



Design Verifier Pane: Report

Value: any valid path and file name
Default: ' $ModelName$ report'

See Also

» “Simulink Design Verifier Reports” on page 13-28
* “Results Interpretation and Use”

Include screen shots of properties

Includes screen shots of properties in the Simulink Design Verifier report. Only valid in
property-proving mode.

Settings
Default: Off

41 On

Includes screen shots of properties in the Simulink Design Verifier report. Only valid
in property-proving mode.

Off

Does not include screen shots of properties in the Simulink Design Verifier report.
Dependency
This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVReportIncludeGraphics
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

* “Simulink Design Verifier Reports” on page 13-28
* “Results Interpretation and Use”

15-75



15 simulink Design Verifier Configuration Parameters

15-76

Display report

Display the report that the Simulink Design Verifier analysis generates after completing
its analysis.

Settings
Default: On
4 On
Displays the report that the analysis generates after completing its analysis.

Off
Does not display the report that the analysis generates after completing its analysis.

Dependency
This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVDisplayReport
Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

* “Simulink Design Verifier Reports” on page 13-28
* “Results Interpretation and Use”



Model Slicer

“Highlight Functional Dependencies” on page 16-2

“Refine Highlighted Model” on page 16-9

“Refine Dead Logic for Dependency Analysis” on page 16-21
“Create a Simplified Standalone Model” on page 16-28

“Highlight Active Time Intervals by Using Activity-Based Time Slicing” on page 16-29
“Simplify a Standalone Model by Inlining Content” on page 16-38
“Workflow for Dependency Analysis” on page 16-42

“Configure Model Highlight and Sliced Models” on page 16-45
“Model Slicer Considerations and Limitations” on page 16-49
“Using Model Slicer with Stateflow” on page 16-57

“Isolating Dependencies of an Actuator Subsystem” on page 16-59
“Isolate Model Components for Functional Testing” on page 16-64

“Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results”
on page 16-74

“Programmatically Resolve Unexpected Behavior in a Model with Model Slicer”
on page 16-77

“Simplification of Variant Systems” on page 16-89

“Refine Highlighted Model Slice by Using Model Slicer Data Inspector”
on page 16-91



16 Model Slicer

Highlight Functional Dependencies

Large models often contain many levels of hierarchy, complicated signals, and complex
mode logic. You can use Model Slicer to understand which parts of your model are
significant for a particular behavior. This example shows how to use Model Slicer to
explore the behavior of the sldvSliceClimateControlExample model. You first select
an area of interest, and then highlight the related blocks in the model. In this example,
you trace the dependency paths upstream of Outl to highlight which portions of the
model affect its behavior.

Open the model and highlight the functional dependencies of a signal in the system:

1 Add the example folder to the search path.

addpath(fullfile(docroot, 'toolbox"', 'sldv', 'examples'))
2  Openthe sldvSliceClimateControlExample model.

sldvSliceClimateControlExample

3 Select Analysis > Design Verifier > Model Slicer to open the Model Slice
Manager.

When you open the Model Slice Manager, Model Slicer compiles the model. You then
configure the model slice properties.

In the Model Slice Manager, click the arrow to expand the Slice configuration list.
5 Set the slice properties:

« Name: QutlSlice

Color: ! (magenta)

* Signal Propagation: upstream

Model Slicer can also highlight the constructs downstream of or bidirectionally from
a block in your model, depending on which direction you want to trace the signal
propagation.

6 Add Outl as a starting point. In the model, right-click Outl and select Model Slicer
> Add as Starting Point.

16-2



Highlight Functional Dependencies

Muodel Slice Manager: sldvSliceClimateControlExample X
 Slice configuration list 3; @ ®
Name Slice % Bl

s OutlSlice 57% %

Name: |Out1Slice | N

Description:

Signal propagation: #=  upstream -

Starting Points [clear all
= L outt

¥ Simulation time window

» Refine Dead Logic

Export to Web  |Generate Slice

Slicer Active

The Model Slicer now highlights the upstream constructs that affect Out1.

16-3



16 Model Slicer

If you create two slice configurations, you can highlight the intersecting portions of their
highlights. Create a new slice configuration and view the intersecting portions of the slice
configuration you created above and the new slice configuration:

1 Create a new slice configuration with the following properties

* Name: Out3Slice

Color: - (red)
* Signal Propagation: upstream
* Starting point: Qut3

16-4



Highlight Functional Dependencies

2 In the Model Slice Manager, select both the Qut1Slice slice configuration and the
Out3Slice slice configuration.

16-5



16 Model Slicer

Muodel Slice Manager: sldvSliceClimateControlExample X
 Slice configuration list 3; @ ®
Name Slice % Bl

s OutlSlice 57%

U Out3Slice 34%

Name: | Out3Slice | .

Description:

Signal propagation: #=  upstream &

Starting Points [clear all
5 L outs

¥ Simulation time window
» Refine Dead Logic

Export to Web  |Generate Slice

Slicer Active

Model Slicer highlights portions of the model as follows:

* The portions of the model that are exclusively upstream of Outl are highlighted in
cyan.

* The portions of the model that are exclusively upstream of Out3 are highlighted in
red.

16-6



Highlight Functional Dependencies

* The portions of the model that are upstream of both Outl and Out3 are highlighted in

black.
on_off on_off
on_off
Write off_off_signal
Tzat
= = g Hﬂ_iigeratbnOut%
delsy
= Wite1 Time delay sec 8 Tmeas an
Tset
@—* DeltaT fan DeltaT_fan Refrigeration
DT_fan plset  CoolDn e
- Write2 DSM fantemp pTmeas HestOn
ModeC onirol *
b=ttaTHeatCoo | eltaTHeatCod n
DTHeatCool Tset HeaterAzt 2
Write3 DSM pump temp T TR
Tmess -
Tmeas PumpAct *
PumpDelay PumpDelay ot
PumpDelay Heater

Writed DSM pump templ

After you highlight a portion of your model, you can then refine the highlighted model to
an area of interest. Or, you can create a simplified standalone model containing only the

highlighted portion of your model.

To view the details of the highlighted model in web view, click Export to Web. The web
view HTML file is stored in <current folder>\<model name>\webview.html.

16-7



16 Model Slicer

16-8

sldv SliceClimateControlExample || View All |

2 [al sidvSliceClimateControlExample »

o) Q_*L”I | on_cf |
! on_oft =

Tite: oF_off_signal

2 delay dalay
e Wikital Time delay sec
DehtaT_fan I | DettaT_fan l
e Witz DM fan temp

taTHeatCol taTHeatCo
DTHeatCoal E_ipump e
O] =]
PumpDelay e —

Wit DSM purnip tamp

»

sldvSliceClimateControlExample

Model Slicer highlighted view

Name Qut3Slice Out1Slice Intersection
Description Intersection for two slice configurations.
Color ——

Signal propagation Upstream Upstream
Starting Points + JOut3 - _/Quil

See Also

More About

. “Refine Highlighted Model” on page 16-9

. “Create a Simplified Standalone Model” on page 16-28

. “Model Slicer Considerations and Limitations” on page 16-49



Refine Highlighted Model

Refine Highlighted Model

After you highlight a model using Model Slicer, you can refine the dependency paths in
the highlighted portion of the model. Using Model Slicer, you can refine a highlighted
model by including only those blocks used in a portion of a simulation time window, or by
excluding blocks or certain inputs of switch blocks. By refining the highlighted portion of
your model, you can include only the relevant parts of your model.

In this section...

“Define a Simulation Time Window” on page 16-9
“Exclude Blocks” on page 16-13

“Exclude Inputs of a Switch Block” on page 16-17

Define a Simulation Time Window

You can refine a highlighted model to include only those blocks used in a portion of a
simulation time window. Defining the simulation time window holds some switch blocks
constant, and as a result removes inactive inputs.

1 Add the example folder to the search path.

addpath(fullfile(docroot, 'toolbox"', 'sldv', 'examples'))
2  Openthe sldvSliceClimateControlExample model.

sldvSliceClimateControlExample

3 Select Analysis > Design Verifier > Model Slicer to open the Model Slice
Manager.

When you open the Model Slice Manager, Model Slicer compiles the model. You then
configure the model slice properties.

In the Model Slice Manager, click the arrow to expand the Slice configuration list.
5 Set the slice properties:

« Name: OutlSimulation

Color: J (cyan)
* Signal propagation: upstream

16-9



16 Model Slicer

Model Slice Manager: sldvSliceClimateControlExample X

¢
 Slice configuration list 3; @ U
Name Slice % I:II:I':,

Out1Simulation
®
Name: |0ut15imu|at|'on | J

Description:

Signal propagation: #=  upstream &

Starting Points [Add all outports
Right-click model items fo select.

¥ Simulation time window
» Refine Dead Logic

Export to Web  Generate Slice

Slicer Active

6 In the top level of the model, select the Outl block as the slice starting point. Right-
click the Out1l block and select Model Slicer > Add as Starting Point.

The model is highlighted.
In the Model Slice Manager, select Simulation time window.
To specify the stop time of the simulation time window, click the run simulation

button in the Model Slice Manager.

16-10



Refine Highlighted Model

9 Set the Stop time to 10.
10 Click OK to start the simulation.

EL Meodel Slice Manager: sldvSliceClimateControlExample x

* Slice configuration list

Name Slice %
Out1Simulation 57%
E Record simulation time window: sldvSliceClimateContro... X
Name: OutlSimulation
—I Please specify stop time of the simulation time window and
Description:

press OK to start simulation. The model is in editable
highlight mode now.

Signal propagation: 4= |upstream ¥ Stop time: |10.0 l

Starting Points [clear al

[ Log inputs and outputs of the starting points
2 Doyt

save As [sldvsliceClimateControlExample.sislice| | Change

[ox ][ concel

¥ Simulation time window
Run simulation

Use existing simulation data
» Refine Dead Logic

Export to Web  Generate Slice
Slicer Active

The path is restricted to only those blocks that are active until the stop time that you
entered.

16-11



16 Model Slicer

11 To see how this constraint affects the highlighted portion of the model, open the
Refrigeration subsystem.

The highlighted portion of the model includes only the input ports of switches that
are active in the simulation time window that you specified.

16-12



Refine Highlighted Model

After you refine your highlighted model to include only those blocks used in a portion of a
simulation time window, you can then “Create a Simplified Standalone Model” on page
16-28 incorporating the highlighted portion of your model.

Exclude Blocks

You can refine a highlighted model to exclude blocks from the analysis. Excluding a block
halts the propagation of dependencies, so that signals and model items beyond the
excluded block in the analysis direction are ignored.

Exclusion points are useful for viewing a simplified set of model dependencies. For
example, control feedback paths create wide dependencies and extensive model

16-13



16 Model Slicer

16-14

highlighting. You can use an exclusion point to restrict the analysis, particularly if your
model has feedback paths.

Note Simplified standalone model creation is not supported for highlighted models with
exclusion points.

In the Model Slice Manager, click the arrow to expand the Slice configuration list.

To add a new slice configuration, click the add new button @

3  Set the slice properties:

 Name: OutlExcluded

) Color: ! (red)

* Signal Propagation: upstream

4 In the top level of the model, select the Outl block as the slice starting point. Right-

click the Out1l block and select Model Slicer > Add as Starting Point.



Refine Highlighted Model

Muodel Slice Manager: sldvSliceClimateControlExample X

o
 Slice configuration list 3; @ U
Name Slice % ,{I':,

O Out1Simulation 12% ®

s OutlExcluded 57%

Name: |0ut1Echuded | 1

Description:

Signal propagation: #=  upstream &

Starting Points Iclear al
= L outt

» Simulation time window

» Refine Dead Logic

Export to Web | Generate Slice

Slicer Active

The model is highlighted.

To open the subsystem, double-click Refrigeration.

Right-click the Fan switch block, and then select Model Slicer > Add as Exclusion
Point.

The blocks that are exclusively upstream of the Fan switch block are no longer
highlighted. The DT Fan Data Store Read block is no longer highlighted.

16-15



16 Model Slicer

16-16

To see how this constraint affects the highlighted portion of the model, view the
parent system.

The DSM fan temp Data Store Memory block and the Write2 Data Store Write
block are no longer highlighted, because the DT Fan Data Store Read in the
Refrigeration subsystem no longer accesses them.



Refine Highlighted Model

M on_off on_off

- Write off_off_signal
Test
= = i HeiigeratnOut%
delay P
: Write1 Time delay sec Treas 2L
Tset
3 DeltaT_fan DeltaT_fan Refrigeration
OT fan Teat Coolln
S Wirite2 DS M fan temp Tmeas HestOn
ModeConirol
eftsTHeatCod] ettaTHeatCog n
DTHeatCool Tt HesterAct 2
Write3 DSM pump temp .—
Sor
Tmess
—_— Tmeas Pumpact 3
B PumpDelay PumpDelay outa
PumpDelay -

Writed DSM pumnp temp Heater

Exclude Inputs of a Switch Block

For complex signal routing, you can constrain the dependency analysis paths to a subset
of the available paths through switch blocks. Constraints appear in the Model Slice
Manager.

Note Simplified standalone model creation is not supported for highlighted models with
constrained switch blocks.

1 Double-click Refrigeration to open the subsystem.
2 Constrain the On switch block:

* Right-click the switch block and select Model Slicer > Add Constraint.
* In the Constraints dialog box, select Port 3.
» Click OK.

16-17



16 Model Slicer

Model Slice Manager: sldvSliceClimateControlExample it
'_P
 Slice configuration list 3; @ O
Name Slice % ,{I':,
O Out1Simulation 12% ®
s OutlExcluded 34%
Name: |0ut1 Excluded | .

Description:

-

Signal propagation: #=  upstream

Starting Points [clear all

B T outt
Exclusion Peoints [clear all
B LFFan

Constraints [clear all
B O on: Port 3

» Simulation time window
» Refine Dead Logic

Export to Web|  Generate Slice

Slicer Active

The path is restricted to the Constant1l port on the switch. The blocks that are
upstream of Port 1 and Port 2 of the constrained switch are no longer highlighted.

Only the blocks upstream of Port 3 are highlighted.

16-18



Refine Highlighted Model

3 To see how this constraint affects the highlighted portion of the model, view the
parent system.

16-19



16 Model Slicer

See Also

More About

. “Create a Simplified Standalone Model” on page 16-28
. “Model Slicer Considerations and Limitations” on page 16-49

16-20



Refine Dead Logic for Dependency Analysis

Refine Dead Logic for Dependency Analysis

To refine the dead logic in your model for dependency analysis, use the Model Slicer. To
provide an accurate slice, Model Slicer leverages Simulink Design Verifier dead logic
analysis to remove the unreachable paths in the model. Model Slicer identifies the dead
logic and refines the model slice for dependency analysis. For more information on Dead
logic, see “Dead Logic Detection” on page 6-10.

Analyze the Dead Logic

This example shows how to refine the model for dead logic. The

sldvSlicerdemo dead logic model consists of dead logic paths that you refine for
dependency analysis.

1. Open the sldvSlicerdemo dead logic model, and then select Analysis > Design
Verifier > Model Slicer.

open_system('sldvSlicerdemo dead logic');

16-21



16 Model Slicer

Simulink Design Verifier
Cruise Control Test Generation

L1 F # enable
enable
[ 2 } P brake throt = 1 }
brake throt
1 = sat
sel [0 100]
G ) ——{ewees
speed Actual s
D >inc targetf—————» (2 )
inc target
! 4 " | dec
dec

Controller

This example shows how to refine the model for dead logic. The model consists of a Controller
subsystem that has a set value equal to 1. Dead logic refinement analyszis identifies the dead logic
in the model. The inactive elements are removed from the slice.

Toggle Constraint

Copyright 2006-2018 The MathWorks, Inc.

Open the Controller subsystem and add the outport throt as the starting point.

16-22



Refine Dead Logic for Dependency Analysis

The Model Slicer highlights the upstream dependency of the throt outport.

2. In the Model Slice Manager, select Refine Dead Logic.
3. Click Get Dead Logic Data.

16-23



16 Model Slicer

Madel Slice Manager: sldvSlicerdernc_dead_legic et

b Slice configuration list :«’-?j-_ @ ®

MName: | untitled | _]

Description:

Sigmal propagation: #= |upstream 57

Starting Points [clear all]
B LF throt

b Simulation time window
¥ Refine Dead Logic
Get Dead Logic Data

Export to Web | | Generate Slice

Slicer Active

4. Specify the Analysis time and run the analysis. You can import existing dead logic
results from the sldvData file or load existing . slslicex data for analysis. For more
information, see “Refine Highlighted Model by Using Existing .slslicex or Dead Logic
Results” on page 16-74.

16-24



Refine Dead Logic for Dependency Analysis

Refine Dead Logic

Generate results

Run analysis

Analysis time: |300

Import SLDV data

Load results

Browse for SLDV data file 'ﬁ
Save As |‘1.s|d*u5|icerdemn_dead_lagic.ﬁlsiicex Chan_ge
Browse for existing dead logic results 'ﬁ

Cancel

16-25



16 Model Slicer

As the set input is equal to true, the False input to switch is removed for dependency

analysis. Similarly, the output of block OR is always true and removed from the model
slice.

See Also

More About
. “Refine Highlighted Model” on page 16-9

16-26



See Also

“Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results” on
page 16-74

16-27



16 Model Slicer

Create a Simplified Standalone Model

16-28

You can simplify simulation, debugging, and formal analysis of large and complex models
by focusing on areas of interest in your model. After highlighting a portion of your model
using Model Slicer, you can generate a simplified standalone model incorporating the
highlighted portion of your original model. Apply changes to the simplified standalone
model based on simulation, debugging, and formal analysis, and then apply these changes
back to the original model.

Note Simplified standalone model creation is not supported for highlighted models with
exclusion points or constrained switch blocks. If you want to view the effects of exclusion
points or constrained switch blocks on a simplified standalone model, first create the

simplified standalone model, and then add exclusion points or constrained switch blocks.

1 Highlight a portion of your model using Model Slicer.

See “Highlight Functional Dependencies” on page 16-2 and “Refine Highlighted
Model” on page 16-9.

In the Model Slice Manager, click Generate slice.
3 Inthe Select File to Write dialog box, select the save location and enter a model
name.
The simplified standalone model contains the highlighted model items.
4 To remove highlighting from the model, close the Model Slice Manager.
When generating a simplified standalone model from a model highlight, you might need to
refine the highlighted model before the simplified standalone model can compile. See the

“Model Slicer Considerations and Limitations” on page 16-49 for compilation
considerations.

See Also

More About

. “Basic Workflow for Simulink Design Verifier” on page 1-31



Highlight Active Time Intervals by Using Activity-Based Time Slicing

Highlight Active Time Intervals by Using Activity-Based
Time Slicing

Stateflow states and transitions can be active, inactive, or sleeping during model
simulation. You can use Model Slicer to constrain model highlighting to only highlight the
time intervals in which certain Stateflow “States” (Stateflow) and “Transitions”
(Stateflow) are active. Therefore, you are able to refine your area of interest to only those
portions of your model that affect model simulation during the operation of the selected
states and transitions. You can also constrain model highlighting to the intersection of the
time intervals of two or more states or transitions.

In this section...

“Highlighting the Active Time Intervals of a Stateflow State or Transition” on page 16-
29

“Activity-Based Time Slicing Limitations and Considerations” on page 16-37
“Stateflow State and Transition Activity” on page 16-37

Highlighting the Active Time Intervals of a Stateflow State or
Transition

The slslicer fuelsys activity slicing model contains a fault-tolerant fuel
control system. In this tutorial, you use activity-based time slicing to refine a model
highlight to only those time intervals in which certain states and transitions are active.
You must be familiar with how to “Highlight Functional Dependencies” on page 16-2 by
using Model Slicer.

Create a Dynamic Slice Highlight for an Area of Interest
1 Add the example folder to the search path.

addpath(fullfile(docroot, 'toolbox', 'sldv', 'examples'))
2 Openthe slslicer fuelsys activity slicing model.

open _system('slslicer fuelsys activity slicing')

3 Open Model Slicer and add the control logic Stateflow chart in the fuel rate
controller subsystem as a Model Slicer starting point.

4 Highlight the portions of the model that are upstream of the control logic
Stateflow chart.

16-29



16 Model Slicer

5 Simulate the model within a restricted simulation time window (maximum 20
seconds) to highlight only the areas of the model upstream of the starting point and
active during the time window of interest.

— . 2 Sensor correction and
throttla Fault Redundancy .
= Airflow calculation Fuel Calculation
- B SenE0rs

Comected = SENE_IN

. Failures
C2 )| L |

est. air flow P=est. air flow

- Failures
engine
speed
fesdback comection = feedback comection
mode
II,-"—‘-\I fusd rate |[— 1 )

(s )= » fuel

fail_siate = Failures rate

‘|

throt
EGO
apaadD“
= ()
|_meode = mode
prcs

MaP |

controd logic

‘|

fuel rate controller

Constrain the Model Highlight to the Active Time Interval of a Stateflow State

1 To open the Model Slice Manager, from the Simulink menu, select Analysis >
Design Verifier > Model Slicer .

2 Navigate to the control logic Stateflow chart in the fuel rate controller
subsystem.

open_system('slslicer fuelsys activity slicing/fuel rate controller/control logic')
3 To constrain the model highlight to only those time intervals in which the

Fueling_Mode > Running > Low_Emissions > Warmup state is active, right-click

the Warmup state and select Model Slicer > Constrain to active time intervals

for “Warmup”.

16-30



Highlight Active Time Intervals by Using Activity-Based Time Slicing

fail 1
entry: fail_state[02] = 1; J""‘

|[Ego = max_sago] |

[Ego > max_sga)/
Fail INC

rol> max_throt | throt = min_throt}/
Fail INC

normal
entry: fail_state[THROT] = 0 Tail
eniry: fail_stale[THROT] =

|

g

[thrat = min_throt & throt = max_throt]
{ Fail. DEC

prass > max_press | press < min_prass]
[FailINC

normal
enlry: fail_stata[PRESS] = [

H

i

1

i

fail s
enlry: fail_state[PRESS] = 1 i
:

1

i

1

[press = min_prass & press < max_prass)

[speed==0 & press < zero_thresh)/

L=

|anlw: fail_stale[SPEED] = 0 entry: fail_stale[SPEED] = 1

[speed = 0/

‘ fail ;
i

5 fFusl_Disabled
: | speed = max_speed | | @0ty fuel_mode = DISABLED :
| (Famn ® 3 i
: rning (H) Orvarspeed H
| (Low_Emissions . ™ (Rich_Mixture A :
i entry: fuel_mode = LOW H) entry: fuel_mode = RICH ‘
i A
| :
i [in(Fail.One)] [in{Spead_normal) & ... i
! Marmal [Yirn Fail_ ALt} spaad = (max_spaead - hys)] E
1 1 g
i [in{Fail. Nona)] Yy [irs(Fail Multi)] i
i oo 1anlsr{FaIl.ﬂ:‘lulll‘; 5 :
i 2 [in{Fail Onea}} i
i 4 Warmio ) "“‘--_blsmunwn i
i fin{C2.narmal) Madel Slicer  * Constrain to active time intervals for "Warmup” '
i Explore I N s ;

Properties...

Help

16-31



16 Model Slicer

Model Slicer is updated to highlight only those portions of the model that are active

during the time intervals in which the warmup state is active.

fail
entry: fail_state[02] = 1;

Warmup
entry: fail_state[O02Z]

|Ego = max_eqgo] /

It =o2_t_thresh]
[Ego = max_agall
| normal
entry: fail_state[02] = [,

[thrat= max_thrat | throt < min_throt)f

normal
entry: fail_stata[THROT] = 0; fail
antry: fail_stale[THROT] = 1;

[throt > min_throt & throt < max_throt]

S ————

-
5

IFallING

press > Max_press | prass < min_prass)

narmal
antry: fall_stale[PRESS]) =0

fail

entry: fail_state[FRESS] = 1

3

[press = min_prass & press < max_press] |

[speed==0 & prass < zero_thresh]/

normal fail

antry: faill_state[SPEED] = 0

[spaad = 0]/

entry: fail_state[SPEED] = 1

VFall
i Multi
1 : INC
i = One 1
: 2
T
Fueling_bo Fuel Disabled
[ speed = max_speed | antry: fuel_mode = DISABLED
(Running (H) h
(Low_Emissions Y /Rich_Mixture
eniry: fusl_mode = LOW H) antry: fuel_mode = RICH
[in{Fail One)| Single Failu Spaar i) & ..
Narmal : o [tin{Fail_Multi)] speed < (max_speed
1
[in{Fail.Nonea )] il ML

1 [in{Fail.On&)}

277

.
in{O2.normal) -
[ir ] J

1ur1ter|:|—ail.l.'1ulti,\

16-32

exib(Fail. Multi)




Highlight Active Time Intervals by Using Activity-Based Time Slicing

The Model Slice Manager is also updated to show the time interval in which the
warmup state is active:

Actual simulation time: 0.01 to 3.86 seconds : 1 active interval

The highlight shows a normal to fail transition in the Pressure state, showing
that a pressure failure occurred during the time interval in which the Warmup state
was active.

Constrain the Model Highlight to the Intersection of the Active Time Intervals of
a Stateflow State and Transition

1 Clear any time interval constraints from the Model Slice Manager.
2 Constrain the model highlight to only those time intervals in which the 02 > fail
state is active.

16-33



16 Model Slicer

Fo2  {Pressure 3
] T H
: 1 :
] i ! [press = max_press | prass < min_press) ’
i (warmup a ¥ 1 / §
3 try: fail_state[02] = 1; HOREMAEBI0 f {1 : E
] entry: fail_state[02] {1 narmal Tail ;
: E ] antry: fail_stale[PRESS] = eniry: fail_stale|PRESS] = 1 '
] [t = 62 _t_thresh] i i
1 [Ego > max_egal/ 1 ! ;
E normal i i [press = min_press & press < max_press] / E
: enlry: fail_state[02] = 0, 1] H
=. i | ;
W AN "
fate Gped T Y

thrat=> max_thrat | throt < min_throt)/

Fail INC [speed==0 & prass < zero_thresh]f

narmal i
eniry: fail_state[THROT] = 0; Tail
antry: fail_stae[THROT] = 1;

anitry: fail_state[SPEED] = 0 entry: fail_state{SPEED] =

[throt = min_throt & throt = max_throd] [spead = 0] f

! Fall.DEC

/
i
|
1
!
i
|
i
1
!
i
|
i
|

narmal fail i
1
1
i
[}
!
1
1
|
[}
1
i
1
|
[}
!

i

|

INC |

Mane {One 1 Two — = Thrae |4 Four :
! o t 1 2 i

N 1

i

[Fueling_Moda i
: 9 {Fuel_Disabled :
i [ speed > max_speed | antry: fuel_made = DISABLED !
! /Runnin ;
! N Overspead :
i L Emizsior icr . i
i fel_mode = LO Bl moda = 2 ;
’ ;
i Fail.One)) [in{Speed.normal) & ... i
E [Yirs{Fail_Multi)] speed < (max_spaed - hys)] i
a . : |
: Fail. Nona)] _ _ I-"' ™ [in{Fail.Multi)] s
] aenter]Fail Multi} L .
1 1 2 i
: s :
: i
. axit{Fail Multi) W i

[
] i
| . :

Model Slicer is updated to highlight only those portions of the model that are active
during the time intervals in which the 02 > fail state is active. The Model Slice

16-34



Highlight Active Time Intervals by Using Activity-Based Time Slicing

Manager is also updated to show the time interval in which the 02 > fail state is
active:

Actual simulation time: 4.83 to 20 seconds : 1 active interval

To constrain the highlighting to the time interval in which the 02 > fail state is
active and the normal to fail transition occurs for the Throttle chart, right-click
the normal to fail transition and add it as a constraint. Model Slicer is updated to
highlight only those portions of the model that are active during the intersection of
the time intervals in which the 02 > fail state is active and the normal to fail
transition occurs for the Throttle chart.

16-35



16

Model Slicer

L  ¢Pressure

: |

i A

E i E [press = max_press | prass < min_press)

i warmup - ] 1 /

]  fal A= o= go = max_aga) | i

1 antry: fail_stata[0Z] = 1; I i p—— i

i . i antry: fail_stale[PRESS] = ( entry: fail_stata[PRESS] = 1
. It = 62_t_thresh] 11

] [Ego = max_ego]/ 1 i

i normal i ] [press = min_press & prass < max_press] /

i entry: fail_stale[02] = 0: i

: il
O SN
Fivctln | — 3 o
i hrat= max_thrat | throt < min_thret)l

E Fail INC [spead==0 & prass < zero_thrash]/

. narmal

] « Aai =]

1 entry: fail_state[THROT] = 0, Tail el =

: antry: fail_state[THROT] = 1: 1 entry: fail_state[SPEED] = [ antry: fail_state[SPEED] =
; [throt = min_throt & throt < max_throt] [speed = 0]/

: |

] . INC  (Thres
; None One |1 wa Q— - 1 Faur
E | 1 t 1 2

(Fueling_Mode
: 9 {Fuel_Disabled
i [ speed > max_spead | antry: fuel_made = DISABLED
1
R
! unning Owerspead
] L Emissior ;
! y: fu le=L0 B E
i
i Fail. One)) [in{Speed.normal) & ...
E [Yirs( F il fAulti)] speed < (max_spaed - hys)]
! ; e
i Fail. Nona)] ) . Y [ir[Fail. Multa)]
! anter|Fail Multi) L
i Fai 1 =
i
i axit(Fail Multi)
3
! \

The Model Slice Manager is also updated to show the time interval in which the 02 >
fail state is active and the normal to fail transition occurs for the Throttle chart:

16-36



See Also

Actual simulation time: 13.87 to 13.87 seconds : 1 active interval

Activity-Based Time Slicing Limitations and Considerations

For limitations and considerations of activity-based time slicing, see “Model Slicer
Considerations and Limitations” on page 16-49.

Stateflow State and Transition Activity

For more information on Stateflow state and transition activity, see “Chart Simulation
Semantics” (Stateflow), “Types of Chart Execution” (Stateflow), and “Syntax for States
and Transitions” (Stateflow).

See Also

More About

. “Using Model Slicer with Stateflow” on page 16-57
. “States” (Stateflow)
. “Transitions” (Stateflow)

16-37



16 Model Slicer

Simplify a Standalone Model by Inlining Content

16-38

You can reduce file dependencies by inlining model content when you generate the sliced
model. Inlining brings functional content into the sliced model and can eliminate model
references, library links, and variant structures that are often not needed for model
refinement or debugging.

If you want to disable inlining for certain block types, open the Model Slice Manager and

click the options button ‘@ Select only the block types for which you want to inline
content. For information on block-specific inlining behavior, see “Inline Content Options”
on page 16-47.

This example demonstrates inlining content of a model referenced by a Model block.

1 Add the path to the example and open the model

addpath(fullfile(docroot, 'toolbox', 'sldv', 'examples'))
open_system('sldvSliceEngineDynamicsExample"')

2  From the menu, select Analysis > Design Verifier > Model Slicer to open the
Model Slice Manager.

3 In the model, right-click the MAP outport and select Model Slicer > Add as
Starting Point. The path is highlighted through the Model block.



Simplify a Standalone Model by Inlining Content

4 Create a sliced model from the highlight. In the Model Slice Manager, click the
Generate slice button.

5 Enter a file name for the sliced model.

The sliced model contains the highlighted model content. The model reference is
removed.

16-39



16 Model Slicer

Engine Gas Dynamics

double douhle
= 1
fus!
fuel o2 out
double double o
-—b Engine Spesd, M -
engine spesd airffuel ratio
double double
(2 }——»{Thoottie Ang. WAP {bar} »( 2 )
throttle angle MAF

Throttle & Manifold

7  Click the arrow to look under the mask of the ThrottleAndManifold subsystem. The
content from the referenced model is inlined into the model in the masked
subsystem.

16-40



Simplify a Standalone Model by Inlining Content

double

= double

Throttle Ang.

double
Throttle Angle, thets (deg)

Limit to Positive

+ Manifold Pressure, Pm (bar)

double
Atmospheric Pressure, Pa (bar)

Threttle Flow, mdot {gis)

idouble

Atmos pheric
Pressure, Pa
{bar)

double

N (o

Engine Speed, N

Throttle

medot Input {g/'s)

Manifold Pressure, Pm (bar)

double

double

Intake Manifold

»()

MAP (bar)

16-41



16 Model Slicer

Workflow for Dependency Analysis

16-42

In this section...

“Dependency Analysis Workflow” on page 16-42
“Dependency Analysis Objectives” on page 16-43

Model analysis includes determining dependencies of blocks, signals, and model
components. For example, to view blocks affecting a subsystem output, or trace a signal
path through multiple switches and logic. Determining dependencies can be a lengthy
process, particularly for large or complex models. Use Model Slicer as a simple way to
understand functional dependencies in large or complex models. You can also use Model
Slicer to create simplified standalone models that are easier to understand and analyze,
yet retain their original context.

Dependency Analysis Workflow

The dependency analysis workflow identifies the area of interest in your model, generates
a sliced model, revises the sliced model, and incorporates those revisions in the main
model.




Workflow for Dependency Analysis

Highlighted
Model

Revised
Sliced Model

!dentify I\.T a(;nl Incorporate
interest ode changes

Simulation
Debugging
Model revision

Crek
sliced model Sliced Model

Dependency Analysis Objectives

To identify the area of interest in your model, determine objectives such as:

* What item or items are you analyzing? Analysis begins with at least one starting point.

* In what direction does the analysis propagate? The dependency analysis propagates
upstream, downstream, or bidirectionally from the starting points.

*  What model items or paths do you want to exclude from analysis?

* What paths do you want to constrain? If your model has switches, you can constrain
the switch positions for analysis.

» Is your model a closed-loop system? If so, the highlighted portion of the model can
include model dependencies from the feedback loop. Consider excluding blocks from
the feedback loop to refine the highlighted portion of the model.

* Do you want to analyze static dependencies, or include simulation effects? Static
analysis considers model dependencies for possible simulation paths. Simulation-based
analysis highlights only paths active during simulation.

16-43



16 Model Slicer

See Also

Related Examples

. “Highlight Functional Dependencies” on page 16-2
. “Refine Highlighted Model” on page 16-9
. “Create a Simplified Standalone Model” on page 16-28

16-44



Configure Model Highlight and Sliced Models

Configure Model Highlight and Sliced Models

In this section...

“Model Slice Manager” on page 16-45

“Model Slicer Options” on page 16-45

“Storage Options” on page 16-45

“Refresh Highlighting Automatically” on page 16-46
“Sliced Model Options” on page 16-46

“Trivial Subsystems” on page 16-47

“Inline Content Options” on page 16-47

Model Slice Manager

Set the properties of your model highlight and standalone sliced model using the Model
Slice Manager.

sy

Click the toggle mode button ‘_/ to switch between model edit mode and model
highlight mode.

If automatic highlighting is disabled in the slice settings, refresh the model highlight

using the refresh button & . Refresh the highlight after changing the slice
configuration.

Model Slicer Options

You can customize the slice behavior using the options dialog box, which is accessed with

the options button @

Storage Options

Changes you make to a model slice configuration are saved automatically. You can store
the slice configuration in the model SLX file, or in an external SLMS file. Saving the

16-45



16 Model Slicer

configuration externally can be useful if your SLX file is restricted by a change control
system.

To set the storage location, click the options @ button in the Model Slice Manager and
set the location in the Storage options pane.

Settings

Store in <model_name>.slx
Saves the model slice configuration in your model’s SLX file
Store in external file

Saves the model slice configuration in a separate SLMS file you specify by clicking
the Save As button. The model slice configuration filename is shown in File.

Refresh Highlighting Automatically

Enables automatic refresh of a model highlight after changing the slice configuration.
Settings

on (default)
Model highlighting refreshes automatically.
off

—

Model highlighting must be refreshed manually. Click the refresh button & in the
Model Slice Manager to refresh the highlight.

Sliced Model Options

You can control what items are retained when you create a sliced model from a model
highlight using the options in the Sliced model options pane.

16-46



Configure Model Highlight and Sliced Models

Option

On (selected)

Off (cleared)

Retain signal
observers

Signal observers, such as
scopes, displays, and test
condition blocks, are
retained in the sliced model.

Signal observers are not retained in
the sliced model (default).

Retain root-level
inports and
outports

Root-level ports are retained
in the sliced model (default).

Root-level ports are not retained in
the sliced model.

Expand trivial
subsystems

Trivial subsystems are
expanded in the sliced model
and the subsystem boundary
is removed (default).

Trivial subsystems are not expanded
in the sliced model and the subsystem
boundary is retained. See “Trivial
Subsystems” on page 16-47.

Trivial Subsystems

If a subsystem has all of these characteristics, Model Slicer considers the subsystem

trivial:

» If the subsystem is virtual, it contains three or fewer nonvirtual blocks.
» If the subsystem is atomic, it contains one or fewer nonvirtual blocks.
* The subsystem has two or fewer inports.

* The subsystem has two or fewer outports.

* The active inport or outport blocks of the subsystem have default block parameters.

» The system does not contain Goto Tag Visibility blocks.
* In the Block Properties dialog box, the subsystem Priority is empty.
* The data type override parameter (if applicable) is set to use local settings.

Note If you generate a sliced model which does not remove contents of a particular
subsystem, the subsystem remains intact in the sliced model.

Inline Content Options

When you create a sliced model from a highlight, model items can be inlined into the
sliced model. The Inline content options pane controls which model components are
inlined in generating a sliced model.

16-47



16 Model Slicer

16-48

Model Inlining on (selected) Inlining off (cleared)

Component

Libraries Model items inside sliced Model items inside sliced libraries are
libraries are inlined in the |not inlined in the sliced model and
sliced model and the library |library link remains in place.
link is removed. (default)

Masked Model items inside sliced Model items inside sliced masked

subsystems masked subsystems are subsystems are not inlined in the sliced
inlined in the sliced model. |model and the mask is retained.
(default)

The mask is retained in the
sliced model.

Model blocks Model items are inlined to  |Model items are not inlined to the sliced
the sliced model from the model from the model referenced by the
model referenced by the Model block. The Model block is
Model block. The Model retained.
block is removed. (default)

Note Model Slicer cannot
inline model blocks that are
not in Normal mode.

Variants Model items are inlined to  |Model items are not inlined to the sliced
the sliced model from the model from the variant. The variant is
active variant. Variants are |retained.
removed. (default)

See Also

Related Examples
. “Highlight Functional Dependencies” on page 16-2
. “Refine Highlighted Model” on page 16-9
. “Simplify a Standalone Model by Inlining Content” on page 16-38




Model Slicer Considerations and Limitations

Model Slicer Considerations and Limitations

When you work with the Model Slicer, consider these behaviors and limitations:

In this section...
“Model Highlighting and Model Editing” on page 16-49
“Standalone Sliced Model Generation” on page 16-49

“Sliced Model Considerations” on page 16-50

“Port Attribute Considerations” on page 16-50

“Simulation Time Window Considerations” on page 16-51

“Simulation-based Sliced Model Simplifications” on page 16-51

“Starting Points Not Supported” on page 16-53

“Model Slicer Support Limitations for Simulink Software Features” on page 16-53
“Model Slicer Support Limitations for Simulink Blocks” on page 16-53

“Model Slicer Support Limitations for Stateflow” on page 16-55

Model Highlighting and Model Editing

When a slice highlight is active, you cannot edit the model. You can switch to model edit
mode and preserve the highlights. When you switch back to slice mode, the slice
configuration is recomputed and the highlight is updated.

Standalone Sliced Model Generation

Sliced model generation requires one or more starting points for highlighting your model.
Sliced model generation is not supported for:

» Forward-propagating (including bidirectional) dependencies
* Constraints

» Exclusion points

Sliced model generation requires a writable working folder in MATLAB.

16-49



16 Model Slicer

16-50

Sliced Model Considerations

When you generate a sliced model from a model highlight, simplifying your model can
change simulation behavior or prevent the sliced model from compiling. For example:

Model simplification can change the sorted execution order in a sliced model
compared to the original model, which can affect the sliced model simulation behavior.

If you generate a sliced model containing a bus, but not the source signal of that bus,
the sliced model can contain unresolved bus elements.

If you generate a sliced model that inlines a subset of the contents of a masked block,
ensure that the subsystem contents resolve to the mask parameters. If the contents
and mask do not resolve, it is possible that the sliced model does not compile.

If the source model uses a bus signal, ensure that the sliced model signals are
initialized correctly. Before you create the sliced model, consider including an explicit
copy of the bus signal in the source model. For example, you can include a Signal
Conversion block with the Output option set to Signal Copy.

For solver step sizes set to auto, Simulink calculates the maximum time step in part
based on the blocks in the model. If the sliced model removes blocks that affect the
time step determination, the time step of the sliced model can differ from the source
model. The time step difference can cause simulation differences. Consider setting
step sizes explicitly to the same values calculated in the source model.

Port Attribute Considerations

You can use blocks that the Model Slicer removes during model simplification to
determine compiled attributes, such as inherited sample times, signal dimensions, and
data types. The Model Slicer can change sliced model port attributes during model
simplification to resolve underspecified model port attributes. If the Model Slicer cannot
resolve these inconsistencies, you can resolve some model port attribute inconsistencies

by:

Explicitly specifying attributes in the source model instead of relying on propagation
rules.

Including in the sliced model the blocks that are responsible for the attribute
propagation in your source model. Before you slice the model, add these blocks as
additional starting points in the source model highlighting.

Not inlining the model blocks that are responsible for model port attributes into the
sliced model. For more information on model items that you can inline into the sliced
model, see “Inline Content Options” on page 16-47.



Model Slicer Considerations and Limitations

Because of the way Simulink handles model references, you cannot simultaneously
compile two models that both contain a model reference to the same model. When you
generate a sliced model, the Model Slicer enters the Slicer Locked (for attribute
checking) mode if these conditions are true:
* The parent model contains a referenced model.
* The highlighted portion of the parent model contains the referenced model.
» The referenced model is not inlined in the sliced model due to one of the following

*  You choose not to inline model blocks in the Inline content options pane of the

Model Slicer options.

¢ The Model Slicer cannot inline the referenced model. For more information on
model items that Model Slicer cannot inline, see “Inline Content Options” on page
16-47.

To continue refining the highlighted portion of the parent model, you must first activate

the slice highlight mode \E/

Simulation Time Window Considerations

Depending on the step size of your model and the values that you enter for the start time
and stop time of the simulation time window, Model Slicer might alter the actual
simulation start time and stop time.

* Ifyou enter a stop or start time that falls between time steps for your model solver, the
Model Slicer instead uses a stop or start time that matches the time step previous to
the value that you entered. For more information on step sizes in Simulink, see
“Solvers” (Simulink).

* The stop time for the simulation time window cannot be greater than the total
simulation time.

Simulation-based Sliced Model Simplifications

When you slice a model by using a simulation time window, some blocks in the source
model, such as switch blocks, logical operator blocks, and others, can be replaced when
creating the simplified standalone model. For example, a switch block that always passes
one input is removed, and the active input is directly connected to the output destination.
The unused input signal is also removed from the standalone model.

16-51



16 Model Slicer

This table describes the blocks that the Model Slicer can replace during model

simplification.

Block in Source Model Simplification

Switch If only one input port is active, the switch is
replaced by a signal connecting the active

Multiport Switch input to the block output.

Enabled Subsystem or Model If the subsystem or model is always
enabled, remove the control input and
convert to a standard subsystem or model.
If the subsystem is never enabled, replace
the subsystem with a constant value
defined by the initial condition.

Triggered Subsystem or Model If the subsystem or model is always

triggered, remove the trigger input and
convert to a standard subsystem or model.

If the subsystem is never triggered, replace
the subsystem with a constant value
defined by the initial condition.

Enabled and Triggered Subsystem or Model |If the subsystem is always executed,
convert to a standard subsystem or model

If the subsystem is never executed, replace
the subsystem with a constant value
defined by the initial condition.

Merge If only one input port is active, the merge is
replaced by a signal connecting the active
input to the block output.

If If only one action subsystem is active,
convert to a standard subsystem or model

If Action and remove the If block.

Switch Case If only one action subsystem is active,
convert to a standard subsystem or model

Switch Case Action and remove the Switch Case block.

16-52



Model Slicer Considerations and Limitations

Block in Source Model Simplification

Logical operator Replace with constant when the block
always outputs true or always outputs false.

Replace the input signal with a constant if
the input signal is always true or always
false.

Starting Points Not Supported

The Model Slicer does not support these model items as starting points:

+ Virtual blocks, other than subsystem Inport and Outport blocks
* Output signals from virtual blocks that are not subsystems

Model Slicer Support Limitations for Simulink Software
Features

The Model Slicer does not support these features:

* Arrays of buses

* Analysis of Simulink Test test harnesses

* Models that contain Simscape™ physical modeling blocks
* Models that contain algebraic loops

* Loading initial states from the source model for sliced model generation, such as data
import/export entries. Define initial states explicitly for the sliced model in the sliced
model configuration parameters.

* Component slicing of the subsystems and referenced models that have multiple rates.

* Component slicing of the “Conditional Referenced Models” (Simulink) and
Conditionally Executed Subsystems (Simulink).

Model Slicer Support Limitations for Simulink Blocks

The table lists the Model Slicer support limitations for Simulink Blocks.

16-53



16 Model Slicer

16-54

Block

Limitation

For Each Subsystem block

The simulation impact is ignored for blocks in a For Each
subsystem. Therefore, applying a simulation time window
returns the same dependency analysis result as a
dependency analysis that does not use a simulation time
window.

Function Caller block

Model Slicer does not support Function Caller blocks.

MATLAB Function block

Model Slicer assumes that any output depends on all
inputs in the upstream direction and any input affects all
outputs in the downstream direction.

Merge block If you generate a slice by using a simulation time window,
Merge blocks are removed in the standalone model if only
a single path is exercised.

Model block Model Slicer does not support multiple instances of the

same Model block with its Simulation mode set to
Normal.

Model Slicer does not resolve data dependencies
generated by global data store memory in Model blocks
with Simulation mode set to Accelerator.

Model Slicer does not support function-call root-level
Inport blocks. For more information, see Export-Function
Models (Simulink).

Model Slicer does not analyze the contents within a
reference to a “Simulate Protected Models from Third
Parties” (Simulink). When you slice a model that contains a
protected model reference, the Model Slicer includes the
entire model reference in the sliced model.

Resettable Subsystem block

Model Slicer does not support Resettable Subsystem
blocks.




Model Slicer Considerations and Limitations

Block Limitation

S-function block Model Slicer assumes that any output depends on all

inputs in the upstream direction and any input affects all
outputs in the downstream direction.

Model Slicer does not determine dependencies that result
from an S-function block accessing model information
dependent on a simulation time window.

State Read block Model Slicer does not support State Read blocks.

State Write block Model Slicer does not support State Write blocks.

Model Slicer Support Limitations for Stateflow

When you highlight models containing a Stateflow chart or state transition table,
Model Slicer assumes that any output from the Chart block or State Transition Table
block depends on all inputs to the Chart block or State Transition Table block.

When you slice a model with a Stateflow chart or a state transition table, Model Slicer
does not simplify the chart or table. The chart or table is included in its entirety in the
sliced model.

If you do not “Define a Simulation Time Window” on page 16-9 when you highlight
functional dependencies in a Stateflow chart or state transition table, Model Slicer
assumes that all elements of the chart or table are active. Model Slicer highlights the
entire contents of such charts and tables.

When you highlight functional dependencies in a Stateflow chart or state transition
table for a defined simulation time window, Model Slicer does not highlight only the
states and transitions that affect the selected starting point. Instead, the Model Slicer
highlights elements that are active in the time window that you specify.

The Model Slicer does not determine dependencies between Stateflow graphical
functions and function calls in other Stateflow charts.

Graphical functions and their contents that were not active during the selected time
window can potentially remain highlighted in some cases.

Entry into states that are preempted due to events can potentially remain highlighted
in some cases. For example, after a parent state is entered, an event action can exit
the state and preempt entry into the child state. In such a case, the Model Slicer
highlights the entry into the child state.

16-55



16 Model Slicer

16-56

The Model Slicer does not support:

* Embedded MATLAB Function blocks
¢ Simulink functions
¢ Truth Table blocks

* Machine-parented data or events in Stateflow.

Activity-Based Time Slicing Considerations for Stateflow

As measured by the 'Executed Substate' decision coverage, state activity refers to these
during/exit actions:

Entry into a state does not constitute activity.

The active time interval for a state or transition includes the moment in which the
selected state exits and the subsequent state is entered.

Indirect exits from a state or transition do not constitute activity. For example, if a
state C exits because its parent state P exits, state C is not considered active.

For more information on decision coverage for Stateflow charts, see “Decision Coverage
for Stateflow Charts” (Simulink Coverage).

When you “Highlight Active Time Intervals by Using Activity-Based Time Slicing” on page
16-29, you can select states and transitions only as activity constraints. You cannot select
these Stateflow objects as constraints:

Parallel states

Transitions without conditions, such as unlabeled transitions which do not receive
decision coverage

States or transitions within library-linked charts

XOR states without siblings. For example, if a state P has only one child state C, you
cannot select state C as an activity constraints because state P does not receive
decision coverage for the executed substate

See Also

“Algebraic Loops” (Simulink) | “Solver Pane” (Simulink)



Using Model Slicer with Stateflow

Using Model Slicer with Stateflow

In this section...

“Model Slicer Highlighting Behavior for Stateflow Elements” on page 16-57
“Using Model Slicer with Stateflow State Transition Tables” on page 16-58

“Support Limitations for Using Model Slicer with Stateflow” on page 16-58

You can use Model Slicer highlighting to visually verify the logic in your Stateflow charts
or tables. After you “Define a Simulation Time Window” on page 16-9, you use Model
Slicer to highlight and slice Stateflow elements that are active within the selected time
window.

Note If you do not “Define a Simulation Time Window” on page 16-9 when you highlight
functional dependencies in a Stateflow chart or table, Model Slicer assumes that all
elements of the chart or table are active. Model Slicer highlights the entire contents of
such charts and tables.

In this section...

“Model Slicer Highlighting Behavior for Stateflow Elements” on page 16-57
“Using Model Slicer with Stateflow State Transition Tables” on page 16-58
“Support Limitations for Using Model Slicer with Stateflow” on page 16-58

Model Slicer Highlighting Behavior for Stateflow Elements

Model Slicer highlights a Stateflow element if it was executed in the specified time
window. Some examples include:

* Achart, if it is activated in the specified a time window.

* A state, if its entry, exit, or during actions are executed in the specified a time window.
* A parent state, if its child state is highlighted in the specified a time window.

* A transition, if it is taken in the specified time window, such as inner, outer, and
default. If the conditions of a transition are evaluated, but the transition is not taken,
Model Slicer does not highlight the transition.

16-57



16 Model Slicer

16-58

Using Model Slicer with Stateflow State Transition Tables

Model Slicer does not directly highlight the contents of Stateflow state transition tables.
To view highlighted functional dependencies in a state transition table, you must view the
auto-generated diagram for the state transition table. For instructions on how to view the
auto-generated diagram for the state transition table, see “Generate Diagrams from State
Transition Tables” (Stateflow).

Support Limitations for Using Model Slicer with Stateflow

For support limitations when you use Model Slicer with Stateflow, see “Model Slicer
Support Limitations for Stateflow” on page 16-55.

See Also

More About

. “Highlight Functional Dependencies” on page 16-2
. “Refine Highlighted Model” on page 16-9
. “Chart Simulation Semantics” (Stateflow)



Isolating Dependencies of an Actuator Subsystem

Isolating Dependencies of an Actuator Subsystem

This example demonstrates highlighting model items that a subsystem depends on. It also
demonstrates generating a standalone model slice from the model highlight.

In this section...

“Choose Starting Points and Direction” on page 16-59

“View Precedents and Generate Model Slice” on page 16-61

Choose Starting Points and Direction

1 Open the f14 example model.

f14

2 Select Analysis > Design Verifier > Model Slicer to open the Model Slice
Manager.

16-59



16 Model Slicer

Model Slice Manager: f14 e
P
» Slice configuration list ?; @ l‘-)
Name: |untit|ed | J
Description:

Signal propagation: %=  upstream ~

Starting Points [Add all outports
Right-click model ifems fo select.

Simulation time window
Run simulation ®

Use existing simulation data

Export to Web  Generate Slice

Simulation time window enabled

3 Inthe Model Slice Manager, click the arrow to expand the Slice configuration list
list. Set the slice properties:
* Name: Actuator_slice
* To the right of Name, click the colored square to set the highlight color. Choose

magenta ! from the palette.
* Signal Propagation: upstream.

4 Add the Actuator Model subsystem as a starting point. In the model, right-click the
Actuator Model subsystem and select Model Slicer > Add as Starting Point.

16-60



Isolating Dependencies of an Actuator Subsystem

Muodel Slice Manager: sldvSliceClimateControlExample X

 Slice configuration list 3; @ (-)

Name Slice % Bl

s OutlSlice 57% %

Name: |0ut15|ice | !
Description:

Signal propagation: #=  upstream &

Starting Points Iclear al
= L outt

¥ Simulation time window
» Refine Dead Logic

Export to Web  |Generate Slice

Slicer Active

View Precedents and Generate Model Slice

1 The model highlights the upstream dependencies of the Actuator Model
subsystem.

16-61



16 Model Slicer

Stick Inpurt (in)
alpha (rad) Elevator Command {deg)
q iradisec)

Trace the following dependency path. Aircraft Dynamics Model is highlighted
via the Pitch Rate q signal, which is an input to Controller, the output of which
feeds Actuator Model.

2 Generate a standalone model containing the highlighted model items:

a In the Model Slice Manager, click Generate slice.

b In the Select File to Write dialog box, select the save location and enter
actuator slice model.

¢ Click Save.

3  The sliced model contains the highlighted model items.

16-62



Isolating Dependencies of an Actuator Subsystem

oooo
(=] =]

Stick Input (in)
| alpha [rad) Elewator Command {deg) —- L | Elevator Deflection d (deg)
Tas+l w
—=| q (rad’sec) wertical Welocity w (ft'sec)
Actuator
Controller Model
| T Wertical Gust wiGust (ftisec)
Piich Rat di's| 4
wiust ate g (radisec) _l_l
Wig | Mw Rotary Gust qGust (radisac) —
aqGaest
m -
) Aircraft
Dryden Wind \ Dynamics
Gust Models by Model
F-14 Flight Cenirol

Copyright 1920-2014 The MathWorks, Inc.

4 To remove highlighting from the model, close the Model Slice Manager.

16-63



16 Model Slicer

Isolate Model Components for Functional Testing

16-64

You can create a standalone model for the model designed using “Component-Based
Modeling” (Simulink). The model slice isolates the model components and relevant
signals for debugging and refinement.

Isolate Subsystems for Functional Testing

To debug and refine a subsystem of your model, create a standalone model. The
standalone model isolates the subsystem and relevant signals. You can observe the
subsystem behavior without simulating the entire source model.

Note You cannot slice virtual subsystems. To isolate a virtual subsystem, first convert it
to an atomic subsystem.

Isolate a Subsystem with Simulation-Based Inputs

To observe the simulation behavior of a subsystem, include logged signal inputs in the
standalone model. When you configure the model slice, specify a simulation time window.
For large models, observing subsystem behavior in a separate model can save time
compared to compiling and running the entire source model.

This example shows how to include simulation effects for the Controller subsystem of a
cruise control system.



Isolate Model Components for Functional Testing

enable > #| =nabie
enable enable
throttie
brake > o brake_pressurs throtie
brake_pressure throttie ¥ throttle
set » L B
set
e > o inc: wehicle_spesd
inc
dec > ] d
dec
target — brake
driver_throt > driver_throt Brgat
| driver_throt frget
TestCases SizeType
pead
Contraller Plant
spesd q IJ—L]_ wehicle_speed
z =
Znit= 0= ZeroOrderHold

1 To open the Model Slice Manager, select Analysis > Design Verifier > Model
Slicer.

2 To select the starting point for dependency analysis, right-click a block, signal, or a
port, and select Model Slicer > Add as Starting point.

3 Toisolate the subsystem in the sliced model, right-click the subsystem, and select
Model Slicer > Slice component.

In the example model, selecting Slice component for the Controller subsystem
limits the dependency analysis to the path between the starting point (the throttle
outport) and the Controller subsystem.

16-65



16 Model Slicer

4 To specify the simulation time window:

a In the Model Slice Manager, select Simulation time window.

Click the run simulation button @
¢ Enter the simulation stop time, and click OK.

16-66



Isolate Model Components for Functional Testing

Record simulation time window: ex_model_slicer_cruise.., =

Please specify stop time of the simulation time window and
press OK to start simulation. The model is in editable
highlight mode now.

Stop time: |45 |

Log inputs and outputs of the starting points

Save As |\5Idv\example.%‘kmodelﬁIicer\ex_mcdel_l Change

The Model slicer analyzes the model dependencies for the simulation interval.

5 To extract the subsystem and logged signals, click Generate slice. Enter a file name
for the sliced model.

Based on the dependency analysis, a Signal Builder block supplies the signal inputs
to the subsystem.

In the sliced model shown, the sliced model Signal Builder block contains one test
case representing the signal inputs to the Controller subsystem for simulation time 0-

45 seconds.
Size Type
Test Case 1 enablz
==t =t
inc nc
/\ throtle |——— (7 )
dec throttle
diriwer_throt diriver_throt
speed speed
Inputs Test Unit {copied from Controller)

16-67



16 Model Slicer

Isolate Referenced Model for Functional Testing

To functionally test a referenced model, you can create a slice of a referenced model

treating it as an open-loop model.

You can isolate the simplified open-loop referenced

model with the inputs generated by simulating the close-loop system.

This example shows how to slice the referenced model controller of a fault-tolerant fuel
control system for functional testing. To create a simplified open-loop referenced model

for debugging and refinement, you generate a slice of the referenced controller.

Step 1: Open the Model

The fault-tolerant fuel control system model contains a referenced model controller

fuel rate control.

open_system('sldvSlicerdemo fuelsys');

Fault-Tolerant Fuel Control System

I

throttle
command

engine_gas_dynamics

X V)
- # engine speed  02_out
|irad/s) )

{radis}

throtile_sw
— throttle

i

Throttle Angle
Fault Switch h

L

!
1
roftle_Angle_Selector

enging_speed

Engine Spead speed_sw

#| throttle angle MAP F—
(deg) {bar)

- fuel_rate_contr

|

1 spead
Engine Speed -

Fault Switch Engine_Speed_Selector

— ] fuel airffuel ratio
o) @) (gis) i

Iz
¥ sensarsfuel_rate F—®|Convert
{o's) fuel

Convert

To Plant

ego_sw |

-
y¥yYy Yy ¥y v

[

ego
EGC Fault Switch

02_\oltage_Selector

v

air_fuel_ratio

fuel

fuel_rata_control

map_sw

H

map
MAF Fault Switch

-
P

MAP_Selector

[h

To Controller

16-68

Copyright 1930-2017 The Math\Warks, Inc.




Isolate Model Components for Functional Testing

Step 2: Slice the Referenced Model

To analyze the fuel rate control referenced model, you slice it to create a standalone
open-loop model. To open the Model Slice Manager, select Analysis > Design Verifier >
Model Slicer or right-click the fuel rate control model and select Model Slicer >
Slice component. When you open the Model Slice Manager, the Model Slicer compiles
the model. You then configure the model slice properties.

Note: The simulation mode of the sldvSlicerdemo fuelsys model is Accelerator
mode. When you slice the referenced model, the software configures the simulation mode
to Normal mode and sets it back to its original simulation mode while exiting the Model
Slicer.

Step 3: Select Starting Point

Open the fuel rate control model, right-click the fuel-rate port, and select Model
Slicer > Add as starting point. The Model Slicer highlights the upstream constructs
that affect the fuel rate.

16-69



16 Model Slicer

Step 4: Generate Slice

a. In the Model Slice Manager dialog box, select the Simulation time window.
b. Click Run simulation.
c. For the Stop time, enter 20. Click OK.

d. Click Generate Slice. The software simulates the sliced referenced model by using the
inputs of the close-loop sldvSlicerdemo fuelsys model.

16-70



Isolate Model Components for Functional Testing

Maodel Slice Manager: sldvSlicerderno_fuelsys

b Slice configuration list

Name: |untitled

Description:

-

Signal propagation: #= |upstream

Slice component

L} fuel_rate_control Record simulation time window: sldvSlicerdemo_fuelsys x
Starting Points [clear all
B AL fuel_rate Please specify stop time of the simulation time window and
press OK to start simulation. The model is in editable highlight
mode now.
Stop time: |20 |

Log inputs and outputs of the starting points

Save As }rm_fuelsvs\sldvslicerdemu_fueIsyﬁ.slslicex| | Change |

[ ok | canca |

¥ Simulation time window

Run simulation

Use existing simulation data

b Refine Dead Logic
Export to Web  Generate Slice

16-71

Slicer Active




16 Model Slicer

For the sliced model, in the Signal Builder window, one test case is displayed that
represents the signals input to the referenced model for simulation time 0-20 seconds.

Test Cass 1

f/“‘m
L

sensore.throtile

EEI¥S0ME. BpsSedl

SENEOrs. &gl

ESIE0rE. map

{2=g)

{rad/s)

bar)

Inputs

16-72

Size-Type

SENE0rE

fual_rate
o=}

fusl_rate




See Also

(4 Signal Builder (sldvSlicerdemo_fuelsys_slice10/Inputs) - O *
File Edit Group Signal Axes Help kS
FEH| P RR | oo [~ FREM » o0 w4 E
Active Group: | Test Case 1 v | e = | m
100
sensors.throttle
50
0
301
sensors.speed
300
299 1 1 1 1 1 1 1 1 1 [ |
1
Sensors.ego
05
0k 1 1
1F
Sensors.map
0.5
1 1 1 1
1] 2 4 6 8

Hame: sensors.throttie

Index: |1 ~

Click to select, Shift+click to add sensors. throttie (#1) [ YMin YMax ]

See Also

“Model Slicer Considerations and Limitations” on page 16-49 | “Highlight Functional
Dependencies” on page 16-2

16-73



16 Model Slicer

Refine Highlighted Model by Using Existing .slslicex or
Dead Logic Results

16-74

When you run simulation or refine dead logic, Model Slicer saves your simulation results
at the default location <current folder>\modelslicer\<model name>

\<model name>.slslicex. For large or complex models, the simulation time can be
lengthy. To refine the highlighted slice, you can use the existing Model Slicer simulation
data or dead logic results.

If you want to highlight functional dependencies in the model again at another time, you
can use the existing. slslicex simulation time window data without needing to
resimulate the model. Model Slicer then uses the existing simulation data to highlight the
model.

Open the Simulink model.

2 To open the Model Slice Manager, select Analysis > Design Verifier > Model
Slicer.

3 Select Simulation time window.

Click Use existing simulation data ‘E’
5 Navigate to the existing .s1lslicex data and click Open.

To refine the dead logic for dependency analysis, you can import the existing Simulink
Design Verifier data file or use the existing . slslicex dead logic results. For more
information see, “Dead Logic Detection” on page 6-10 and “Simulink Design Verifier Data
Files” on page 13-10.

In Model Slice Manager, select Refine Dead Logic and click Get Dead Logic Data.
2 To import the Simulink Design Verifier data file, click Browse for SLDV data file

=)

To load the existing dead logic results, click Browse for existing dead logic results

o)

3 Navigate to the existing data and click Open.



Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results

Madel Slice Manager: sldvdermo_cruise_control ot
¢ Slice configuration list sa] et
Mame:  untitled .
Description: Refine Dead Logic x
Generate results
1 Run analysis
Signal propagation: 4= |upstream T
gnal propag P Analysis time: | 300 | |®|
Starting Points [clear all
= I throt Import SLDV data
Browse for SLDV data file

Save As Lcmise_cunhol.slslicex| | Change |

Load results
Browse for existing dead logic results
* Simulation time window
Run simulation k

Use existing simulation data

¥ Refine Dead Logic
Get Dead Logic Data

Export to Web  Generate Slice
Slicer Active

16-75



16 Model Slicer

See Also

More About

. “Highlight Functional Dependencies” on page 16-2
. “Configure Model Highlight and Sliced Models” on page 16-45
. “Refine Dead Logic for Dependency Analysis” on page 16-21

16-76



Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

Programmatically Resolve Unexpected Behavior in a
Model with Model Slicer

In this section...

“Prerequisites” on page 16-77

“Find and Isolate the Area of the Model Responsible for Unexpected Behavior” on page
16-77

“Investigate the Sliced Model and Debug the Source Model” on page 16-83

In this tutorial, you evaluate a Simulink model, detect unexpected behavior, and use
Model Slicer to programmatically isolate and resolve the unexpected behavior. When you
plan to reuse your API commands and extend their use to other models, a programmatic
approach is useful.

Prerequisites

Be familiar with the behavior and purpose of Model Slicer and the functionality of the
Model Slicer API. “Highlight Functional Dependencies” on page 16-2 outlines how to use
Model Slicer user interface to explore models. The slslicer, slsliceroptions, and
slslicertrace function reference pages contain the Model Slicer API command help.

Find and Isolate the Area of the Model Responsible for
Unexpected Behavior

The sldvSliceCruiseControlHarness test harness model contains a cruise controller
subsystem sldvSliceCruiseControl and a block, TestCases, containing a test case
for this subsystem. You first simulate the model to execute the test case. You then
evaluate the behavior of the model to find and isolate areas of the model responsible for
unexpected behavior:

1  Add the example folder to the search path.

addpath(fullfile(docroot, 'toolbox', 'sldv', 'examples'))

2  Openthe sldvSliceCruiseControlHarness test harness for the cruise control
model.

open_system('sldvSliceCruiseControlHarness"')

16-77



16 Model Slicer

Shortinc

enbl

cnel

set

_ resum e
inc

/\ dec
brakeP

— key

gear
throtDrv
vehsp

L | mode_exp

TestCases

Scope

Size-Type
enbl sldvSliceCruiseControl
o | (D)
cnel requn dviver_request _
dviver_request
st
resume it act_status a
. act_status
inc
dec mode I- »{ 3
operation_mode @
brakeP operation_mode
= targetSp
targel speed
gear target_speed
throtDrv
- throtCC pr »{ 5 )
= throttle
Madel
int3i2 ™  Comwvert cpeded_mode > verify
dtc1 dtc

9

Assertion

Note The Assertion block is set to Stop simulation when assertion fails when the
actual operation mode is not the same as the expected operation mode.

The TestCases block contains several test inputs for sldvSliceCruiseControl.

test cases. You receive an error during the ResumeWO test case.

16-78

[
In the TestCases Signal Builder click the Run all button > to run all of the included




Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

-

fT Error Dialog El =] @

Simulation failed in cvsim due to:
6 Asszertion detected in “sldvSliceCruiseControl Hames s/ Assertion” at time 27

Simulation failed

The Assertion block halted simulation at 27 seconds, because the actual operation
mode was not the same as the expected operation mode. Click OK to close this error
message.

In the sldvSliceCruiseControlHarness model, double-click the Assertion block, clear
Enable assertion, and click OK.

Caution If you do not clear Enable assertion, you encounter an error when you
slice the model.

Click run \& to run the simulation again.
The Scope block in the model contains three signals:

* operation mode - displays the actual operation mode of the subsystem.

+ expected mode - displays the expected operation mode of the subsystem that
the test case provides.

* verify - displays a Boolean value comparing the operation mode and the
expected mode.

16-79



16 Model Slicer

| Scope E@
File Tools View Simulation Help o
@- BOP® | =-A)E-F-

operation mode

The scope shows a disparity between the expected operation mode and the actual
operation mode beginning at time 27. Now that you know the outport displaying the
unexpected behavior and the time window containing the unexpected behavior, use
Model Slicer to isolate and analyze the unexpected behavior.

16-80




Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

Shortinc

/

L

Create a Model Slicer configuration object for the model using slslicer.
obj = slslicer('sldvSliceCruiseControlHarness"')

The Command Window displays the slice properties for this Model Slicer
configuration.

Activate the slice highlighting mode of Model Slicer to compile the model and
prepare it for dependency analysis.

activate(obj)

Add the operation mode outport block as a starting point and highlight it.

addStartingPoint(obj, 'sldvSliceCruiseControlHarness/operation_mode')
highlight(obj)

Size-Type
- - > enbl sldvSliceCruiseControl
| [ reqDrvyp——————— 1
Cnc'| '[lm 4 ST dviver_request
set| ‘;—I:Iuﬂ% » 5ot
resume Ot P [ESUMe S act status =
| [ . B act_status
inc| ‘;—I:IDE- P INc
dec| ‘;-[Iuﬁ - dec operation_mode ——p 3
operaton_modge = .
brakeP| ‘:[n:w - brakeP operation_mode
key| ‘;-[IDE » key targetSp 4
langel_speed
gear| 2] P gear T target_speed :l
throtDrv i) throtDrv
| thotcCp 5
vehSp | ‘;—m - vehSp throttle throttle Scope

L | mode_exp Maodel

TestCases

int32 Comvert B — - erify _/ @

dtc dtc Assertion

0
[

The area of the model upstream of the starting point and active during simulation is
highlighted.

Simulate the model within a restricted simulation time window (maximum 30
seconds) to highlight only the area of the model upstream of the starting point and
active during the time window of interest.

16-81



16 Model Slicer

simulate(obj,0,30)

Only the portion of the model upstream of the starting point and active during the
simulation time window is highlighted.

10 Create a sliced model sldvSliceCruiseControlHarness sliced containing only
the area of interest.

slicedModel = slice(obj, 'sldvSliceCruiseControlHarness sliced')

16-82



Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

'bﬁ sldvSliceCruiseControlHarness_sliced - Simulink EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
HE == _s T iii
- He-E-eeOP - - > @~ i
| sldvsliceCruiseControlHarness _sliced |
@ ||asldvsliceCruiseControHarness b
& Resume\WO Size-Type
E enbl
enbl E—P@
= ool 3 ™ dviver_request
set
sat =
= N resume =
= ) resume act_status
incH=
O
sectr@
hil d -
braker He{= epemtion_made operation_mode2peration_maode
I key =
key . 5 -4
gear target_speed
gear
throtD rv (=) :
vehsp vehSp - throttle
L | mode_exp H{=]
i Madel
5 TestCases
»
Ready 125% FixedStepDiscrete

The sliced model sldvSliceCruiseControlHarness sliced now contains a
simplified version of the source model sldvSliceCruiseControlHarness. The
simplified standalone model contains only those parts of the model that are upstream of
the specified starting point and active during the time window of interest.

Investigate the Sliced Model and Debug the Source Model

You can now debug the unexpected behavior in the simplified standalone model and then
apply changes to the source model.

16-83




16 Model Slicer

1 To enable editing the model again, terminate the Model Slicer mode.

terminate(obj)
2 Navigate to the area of the sliced model that contains the unexpected behavior.

open_system('sldvSliceCruiseControlHarness sliced
/Model/CruiseControlMode/opMode/resumeCondition/hasCanceled’')

opMode.Disable
D, >

mode_prey

opMode Enable

[
>

—

false » \
tfrue - —In--l 1)

T
\ yesno
1F

¥

AND

A 4

¥

o
i
L
:I-'l

7! e

Init=falze

The AND Logical Operator block in this subsystem has a truncated true constant
attached to its second input port. Thist rue constant indicates that the second input
port is always true during the restricted time window for this sliced model, causing
the cruise control system not to enter the “has canceled” state.

3 Navigate to the equivalent AND Logical Operator block in the source system by using
slslicertrace to view the blocks connected to the second input port.

16-84



Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

h = slslicertrace('SOURCE', 'sldvSliceCruiseControlHarness sliced
/Model/CruiseControlMode/opMode/resumeCondition/hasCanceled/LogicOpl"')

hilite system(h)

opMode.Disable
D >

mode_prev

opMode. Enable

[
L

Y

falze

> true
\ yesno
I-.l B i
opMode Disable |—> N — il i
Lyl 77 > Jb o E
] — ) OR ik
Init=ophiode Dis opMode Enable |—D-
= L
>
7 |
Init=falze

The OR Logical Operator block in this subsystem is always true in the current
configuration. Changing the OR Logical Operator block to an AND Logical Operator

block rectifies this error.
4 Before making edits, create new copies of the cruise control model and the test
harness model.

save_system('sldvSliceCruiseControl', 'sldvSliceCruiseControl fixed')
save_system('sldvSliceCruiseControlHarness',
'sldvSliceCruiseControlHarness fixed')

5 Update the model reference in the test harness to refer to the newly saved model.

16-85



16 Model Slicer

set param('sldvSliceCruiseControlHarness fixed/Model',

'ModelNameDialog', 'sldvSliceCruiseControl fixed.slx')

6  Use the block path of the erroneous Logical Operator block to fix the error.

set param('sldvSliceCruiseControl fixed/CruiseControlMode/opMode
/resumeCondition/hasCanceled/LogicOp2', 'LogicOp', 'AND")

opMode.Disable

@D >

mode_prev

opMode. Enable

[
*

A 4

¥

frue

¥

r
‘_H_,_ﬂ.--"'

yesno

Y

opMode Disable |—> AND
~=

k4

Ny > JD
et AND
Ini=ophlode Dis opMode Enable

~ _..

[
*

7

-

Init=falze

7 Simulate the test harness with the fixed model to confirm the corrected behavior.

sim('sldvSliceCruiseControlHarness fixed')

16-86



Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

| Scope E@
File Tools View Simulation Help o
@- 0P ® = Q- FA-

operation mode

Ready T=45.000

The scope now shows that the expected operation mode is the same as the actual
operation mode.

16-87



16 Model Slicer

See Also

slslicer | slsliceroptions |slslicertrace

More About
. “Highlight Functional Dependencies” on page 16-2

16-88



Simplification of Variant Systems

Simplification of Variant Systems

In this section...

“Use the Variant Reducer to Simplify Variant Systems” on page 16-89

“Use Model Slicer to Simplify Variant Systems” on page 16-89

If your model contains “Variant Systems” (Simulink), you can reduce the model to a
simplified, standalone model containing only selected variant configurations.

Use the Variant Reducer to Simplify Variant Systems

After you Add and Validate Variant Configurations (Simulink), you can reduce the model
from the Variant Manager:

Open a model containing at least one valid variant configuration.

N

Select View >> Variant Manager, or right-click a variant system and select Variant
>> Open in Variant Manager.

Click Reduce model....
Select one or more variant configurations.
Set the Output directory.

o U AW

Click Reduce to create a simplified, standalone model containing only the selected
variant configurations.

The Variant Reducer creates a simplified, standalone model in the output directory you
specified containing only the variant configurations you selected. For more information,
see “Reduce Models Containing Variant Blocks” (Simulink).

Use Model Slicer to Simplify Variant Systems

After you Add and Validate Variant Configurations (Simulink), you can use Model Slicer to
create a simplified, standalone model containing only the active variant configuration.
When you “Highlight Functional Dependencies” on page 16-2 in a model containing
variant systems, only active variant choices are highlighted. When you “Create a
Simplified Standalone Model” on page 16-28 from a model highlight that includes variant
systems, Model Slicer removes the variant systems and replaces them with the active
variant configurations.

16-89



16 Model Slicer

16-90

For instructions on how to change the active variant configuration and how to set default
variant choices, see “Working with Variant Choices” (Simulink).

See Also

More About

. “Create a Simple Variant Model” (Simulink)

. “Define, Configure, and Activate Variants” (Simulink)

. “Introduction to Variant Controls” (Simulink)

. “Reduce Models Containing Variant Blocks” (Simulink)



Refine Highlighted Model Slice by Using Model Slicer Data Inspector

Refine Highlighted Model Slice by Using Model Slicer
Data Inspector

Using the Model Slicer Data Inspector, you can inspect logged signals and refine the
highlighted model slice. To refine the highlighted model slice, select the time window in
the graphical plot by using data cursors.

In the Model Slicer Data Inspector, you can:
* View signals — Inspect logged signal data after model simulation. See “Inspect

Simulation Data” (Simulink).

* Select simulation time window — Define simulation time window by using data cursors
in the graphical plot or by defining the Start and Stop time in the Inspector.

* Highlight — Compute a slice for the defined simulation time window. See “Highlight
Functional Dependencies” on page 16-2.

]

Investigate Highlighted Model Slice by Using Model Slicer
Data Inspector

This example shows how to investigate and refine the highlighted model slice by using the
Model Slicer Data Inspector.

In the fault-tolerant fuel control system, the control logic controls the fueling mode of
the engine. In this example, you slice the fuel rate control referenced model. Then,
investigate the effect of fuel rate ratio onthe Fueling mode of the engine. For
more information, see “Modeling a Fault-Tolerant Fuel Control System” (Stateflow).

16-91



16 Model Slicer

engine_speed

Step 1: Start the Model Slice Manager

To start the Model Slice Manager, open the fuel rate control model, and select
Analysis > Design Verifier > Model Slicer.

open_system('sldvSlicerdemo fuelsys');

Fault-Tolerant Fuel Control System

I

throttle
command

engine_gas_dynamics

—#lengine speed  o2_out
5| (rad/s) )

throttle_sw

i

Throttle Angle
Fault Switch

Engine Speed

16-92

speed_sw

I

Engine Speed
Fault Switch

[

ego_sw

EGC Fault Switch

H

map_sw

MAP Fault Switch

L
»| »
! throltle
Ly
Throttle_Angle_Selector (bar)
ICE‘; throttle angle MAP F—
E"_ b et (bar)
| - fuel_rate_contr
! spead (1)
— | fuel airffuel ratio
— (95 )] 1o
Engine_Speed_Selector /=) lg/s) m
Convert #] zenzorsfuel_rate —{ Convert
To/s} fuel
— {g/=)
-
To Plant
il > L
&0
> air_fuel_ratio
Lo fuel_rate_control - T
02_\oltage_Selector m
i
> > |§|
! map
L
l_lLl MAP_Selector

To Controller

Copyright 1930-2017 The Math\Warks, Inc.

To select the starting point, open the fuel rate control model, and add the fuel-
rate port and the fuel mode output signal as the starting point. To add a port or a

signal as a starting point, right-click the port or signal, and select Model Slicer > Add as

Starting Point.

Step 2: Log input and output signals

a. In the Model Slice Manager dialog box, select the Simulation time window and Run

simulation.

b. In the Record simulation time window, for the Stop time, type 20.

c. Select the Log inputs and outputs of the starting points.




Refine Highlighted Model Slice by Using Model Slicer Data Inspector

d. Click OK.
Model Slice Manager sldvSlicerderno_fuelsys x
b Slice configuration list &
Mame: |untitled ;_ﬂ

Description:

Starting Points [clzar all

Signal propagation: = [Upstream i Record simulation time window: sldvSlicerdemo_fuelsys

Slice component

O 2 Please specify stop time of the simulation time window and
bl st press OK to start simulation. The model is in editable

highlight mode now.

s

Bl LPF fyel rate |
Stop time: |20

& control_logic:3

Log inputs and outputs of the starting peints

Save As lfuelsvs‘usldvﬂlicerdemu_meIsyaz.ﬁlslicex | | l:hangeJ

ok | cancel |

¥ Simulation time window

Run simulation

Use existing simulation data
F Refine Dead Logic

Export to Web  Generate Slice

Slicer Active

16-93



16 Model Slicer

Step 3: Inspect signals

To open the Model Slicer Data Inspector, click Inspect Signals.

16-94



Refine Highlighted Model Slice by Using Model Slicer Data Inspector

Madel Slice Manager: sldvSlicerdermno_fuelsys

st

b Slice configuration list

Name: | untitled

Description:

Signal propagation: = upstream *

Slice component
L fuel rate control

Starting Points [clear all
B LP fuel rate

T control_logic:3

¥ Simulation time window (Enabled)

Simulation data:
sldvSlicerdemo_fuelsys.slslicex

Clear |
/ 0 to 20 seconds

Time window

| Stop |20 || Highlight

Start |0
i.Inspect Sdgnals

Actual simulation time: 0 to 20 seconds

b Refine Dead Logic

|Export to Web | | Generate Slice|

Slicer Active

16-95



16 Model Slicer

The logged input and output signals appear in the Model Slicer Data Inspector. When you
open the Model Slicer Data Inspector, Model Slicer saves the existing Simulation Data
Inspector session as MLDATX-file in the current working directory.

You can select the time window by dragging the data cursors to a specific location or by
specifying the Start and Stop time in the navigation pane. To highlight the model for the
defined simulation time window, Click Highlight.

To investigate the Fueling mode, open the control logic Stateflow™ chart, available
in the fuel rate control referenced model. Select the time window for 13-15 seconds
and click Highlight. For the defined simulation time window, the Low Emissions
fueling mode is active and highlighted.

MODEL SLICER DATA INSPECTOR

Start| 12 A soce s
Stop | 15

TIME WINDOW TRACE MARAGER

- umtitied ; sidv SECerdemo_tusisys W conrol_logic:3 M fusl_calc

I ! e b

T .

g

Select the data cursor for the time window 6-7.5 seconds, with @ fuel cal:1. Click
Highlight. In the control logic model, the Fuel Disabled state is highlighted. The
engine is in Shutdown mode.

16-96



See Also

Start & A/ sicniger | ) st sicer
Stop 7.5
| | IE 12
IO, [ omece | wawacer s
i 5 3 XA
: ; B8 Q WS S O I -
~ untitled : sidvSlicerdemo_fuelsys | control_logic:3 m fuel_calc1
= | DISABLED 4| DISABLED -
<|  fuel_calct e— -
1.8
1.5 ‘.\ P N
. n
LY
LY
Y S ——————— =
1.2 [
| o (Fuel_Disabled R 4
= . anc i
Name control_logic:3 n.‘ fuel_mode = DISABLED: i
\ - 3
Line S 0@ . max_speead] H
% Overspaed ;
Units ‘\ i
& i
Data Type sid_FuelModes - N {
: X ‘
[in{Spee mal i
EARES R I -0 \“ ::-{?EE;:T. "‘:J:lels'-i\(‘ﬂ - hys)] i
Model sidvSlicerdemo L Ty i
0.3 y - i )2 H
Block Name conirol_logic S i
. o i
Block Path sidvSlicerdemo s R i
| il MH) H
0 )
- N A9 1
Dimensions [1] G B F 601575 10 |FailMulsh ]
\ i
Rl J i
e e W S e P e i B |

See Also
“Highlight Functional Dependencies” on page 16-2 | “Refine Highlighted Model” on page
16-9

16-97






Verification and Validation

* “Test Model Against Requirements and Report Results” on page 17-2

* “Analyze a Model for Standards Compliance and Design Errors” on page 17-6
* “Perform Functional Testing and Analyze Test Coverage” on page 17-9

* “Analyze Code and Test Software-in-the-Loop” on page 17-13

* “Module Verification and Testing Processor-in-the-Loop” on page 17-22

* “Test a Model in Real Time” on page 17-23



17 Verification and Validation

Test Model Against Requirements and Report Results

System
requirements

Requirements Overview

Requirements are the basis for your system architecture, algorithm, and test plan.
Traceability between requirements documents, model, code, and tests helps you
document relationships, manage design changes, and interpret test results. Required
model properties and test objectives enable targeted design analysis and test case
generation for specific scenarios. You can evaluate your design and identify incomplete or
missing requirements with ad-hoc testing, using simulated user interfaces for your model.
Also, you can use rapid prototyping to validate requirements, and connect to physical or
simulated environments to test your algorithm. Update the design, adding requirements
and requirements links as necessary.

Functional

requirements - Update requirements

|

|

! e Traceability - - -

| | |

i Traceability i

i i i

| | |

Develop Develop
Develop test

specification / = detailed = casss = Run tests - Report results
architecture model

17-2

f |

Refine

Test a Cruise Control Safety Requirement

This example shows a requirements-based testing workflow for a cruise control model.
You start with a model that has traceability to an external requirements document. You
add a test to evaluate two safety requirements, checking that the cruise control
disengages when the system reaches certain conditions. You add traceability to this test,
run the test, and report the results.

1 Create a copy of the project in a working folder. Enter



Test Model Against Requirements and Report Results

slVerificationCruiseStart

Open the model and the test harness. On the command line, enter

open_system simulinkCruiseAddRegExample
sltest.harness.open('simulinkCruiseAddRegExample', 'SafetyTest Harnessl')
Open the Test Sequence block.

* The BrakeTest sequence tests that the system disengages when the brake pedal
is pressed. It includes a verify statement

verify(engaged == false,...
'verify:brake', ...
'system must disengage when brake applied')

* The LimitTest sequence tests that the system disengages when the speed
exceeds a limit. It includes a verify statement

verify(engaged == false,...
'verify:limit', ...
'system must disengage when limit exceeded')

Open the requirements document. In the Simulink Project window, expand the
documents folder and open simulinkCruiseChartReqs.docx.

Add links between the test steps and the requirements document.

a In the requirements document, highlight item 3.1, “Vehicle braking will
transition system to disengaged (inactive) when engaged (active)”

b With item 3.1 highlighted, in the test sequence, right-click the BrakeTest step.
Select Requirements traceability > Link to Selection in Word.

¢ In the requirements document, highlight item 3.4, “Transition to disengaged
(inactive) when vehicle speed is outside the limits of 20 mph to 90 mph”

d  With item 3.4 highlighted, in the test sequence, right-click the LimitTest step.
Select Requirements traceability > Link to Selection in Word.

e Save the requirements document and the model.

Create a test case in the Test Manager, and link the test case to the requirements
section.

a Open the Test Manager. In the Simulink menu, select Analysis > Test Manager.

b In the Test Manager toolstrip, click New > Test File. Select the tests folder in
the project, and enter a name for the test file. Click Save.

A new baseline test is created.

17-3



17

Verification and Validation

17-4

Under System Under Test, in the Model field, click the button & to use the
current model. The field displays the model name.

Expand the Test Harness section. From the drop-down menu, select the test
harness name.

In the requirements document, highlight section 3.1.

In the test case, expand the Requirements section. Click the arrow next to the
Add button and select Link to Selection in Word.

Use the same process to link the test case to section 3.4 in the requirements
document.

Highlight the test case. In the Test Manager toolstrip, click Run.

When the test finishes, expand the Verify Statements results. The results show that
both assessments pass, and the plot shows the detailed results of each statement.

- |=| New Test Case 1
w x| Verify Statements
wverify-brake
V' verfy:limit
i Sim Qutput (simulinkCruiseAddRec

Fa

o 0 00

Pass

» Untested

9 Create a report using a custom Microsoft Word template.

In the Test Manager, right-click the test case name. Select Results: > Create
Report.

In the Create Test Result Report dialog box, set the options:
o Title: SafetyTest

* Results for: ALl Tests
* File Format: DOCX



See Also

+ For the other options, keep the default selections.

¢ For the Template File, select the ReportTemplate.dotx file in the
documents project folder.

d Enter a file name and select a location for the report.
e C(lick Create.
10 Review the report.

a In the Test Case Requirements section, click the link to trace to the
requirements document.

b The Verify Result section contains details of the two assessments in the test,
and links to the simulation output.

Name E Data Type E Units E Sample Time E Interp E Sync E :‘:m
© Tes e e e s A
Sequencel__.Merifyverify(engaged == siTesiResuit ! ! ' zoh ! union ! Link
false) ! ! ! ' ! !

-----------------------------
O Test ! ! ! : ! _ .
Sequencel...MerifyHigh:verify(engaged @ SITestResut ! ! zoh | union 1 Link
== false) : : : : : :
Related Examples
. “Link Tests to Requirements” (Simulink Test)

. “Validate Requirements Links in a Model” (Simulink Requirements)

. “Customize Requirements Traceability Report for Model” (Simulink Requirements)

17-5



17 Verification and Validation

Analyze a Model for Standards Compliance and Design
Errors

Standards and Analysis Overview

During model development, check and analyze your model to increase confidence in its
quality. Check your model against standards such as MAAB style guidelines and high-
integrity system design guidelines such as DO-178 and ISO 26262. Analyze your model
for errors, dead logic, and conditions that violate required properties. Using the analysis
results, update your model and document exceptions. Report the results using
customizable templates.

standards |
1
I
““--—._.——ﬁ ;
| I
| I
I
i
I
* Model analysis: check
Develop detailed N Add lpropfarty N standards, check for_d.eslgn Y—»| Report results
model specifications errors, check specified
properties
F Y N
Resolve errorsand | Replicate errors
confirm exceptions | Analyze dependencies

Check Model for Style Guideline Violations and Design Errors

This example shows how to use the Model Advisor to check a cruise control model for
MathWorks® Automotive Advisory Board (MAAB) style guideline violations and design
errors. Select checks and run the analysis on the model. Iteratively debug issues using
the Model Advisor and rerun checks to verify that it is in compliance. After passing your
selected checks, report results.

17-6



Analyze a Model for Standards Compliance and Design Errors

Check Model for MAAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAAB modeling
guidelines.

1 Create a copy of the project in a working folder. On the command line, enter

slVerificationCruiseStart
2  Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample
In the model window, select Analysis > Model Advisor > Model Advisor.

Click OK to choose simulinkCruiseErrorAndStandardsExample from the
System Hierarchy.

5 Check your model for MAAB style guideline violations using Simulink Check.

In the left pane, in the By Product > Simulink Check > Modeling Standards
> MathWorks Automotive Advisory Board Checks folder, select:

* Check for indexing in blocks

* Check for prohibited blocks in discrete controllers

* Check model diagnostic parameters

Right-click the MathWorks Automotive Advisory Board Checks node, and
then select Run Selected Checks.

Click Check model diagnostic parameters to review the configuration
parameter settings that violate MAAB style guidelines.

In the right pane, click the parameter links to update the values in the
Configuration Parameters dialog box.

To verify that your model passes, rerun the check. Repeat steps ¢ and d, if
necessary, to reach compliance.

To generate a results report of the Simulink Check checks, select the
MathWorks Automotive Advisory Board Checks node, and then, in the right
pane click Generate Report....

Check Model for Design Errors

While in Model Advisor, you can also check your model for hidden design errors using
Simulink Design Verifier.

17-7



17 Verification and Validation

1 In the left pane, in the By Product > Simulink Design Verifier folder, select
Design Error Detection.

In the right pane, click Run Selected Checks.

After the analysis is complete, expand the Design Error Detection folder, then
select checks to review warnings or errors.

4 In the right pane, click Simulink Design Verifier Results Summary. The dialog
box provides tools to help you diagnose errors and warnings in your model.

a Review the results on the model. Click Highlight analysis results on model.
Click the Compute target speed subsystem, outlined in red. The Simulink
Design Verifier Results Inspector window provides derived ranges that can help
you understand the source of an error by identifying the possible signal values.

b Review the harness model. The Simulink Design Verifier Results Inspector
window displays information that an overflow error occurred. To see the test
cases that demonstrate the errors, click View test case.

¢ Review the analysis report. In the Simulink Design Verifier Results Inspector
window, click Back to summary. To see a detailed analysis report, click HTML
or PDF.

See Also

Related Examples
. “Check for Compliance Using the Model Advisor and Edit-Time Checking” (Simulink

Check)
. “Collect Model Metrics Using the Model Advisor” (Simulink Check)
. “Run a Design Error Detection Analysis” on page 6-4
. “Prove Properties in a Model” on page 12-5

17-8



Perform Functional Testing and Analyze Test Coverage

Perform Functional Testing and Analyze Test Coverage

Functional Testing and Coverage Analysis Overview

Functional testing starts with building test cases based on requirements. These tests can
cover key aspects of your design and verify that individual model components meet
requirements. Test cases include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests
systematically. To check for regression, add baseline criteria to the test cases and test the
model regularly. Coverage measurement reflects the extent to which these tests have fully
exercised the model. Coverage measurement also helps you to add tests and
requirements to meet coverage targets.

Functional requirements

Create test inputs or Add run-time

import external test data verifications
Run tests Y- Collect > Report
coverage results
Add expected outputs A

Set coverage criteria

h 4

and acceptance criteria
N

v

Analyze dependencies
Refine model

Add tests
Refine requirements

Incrementally Increase Test Coverage Using Test Case
Generation

This example shows a functional testing-based testing workflow for a cruise control
model. You start with a model that has tests linked to an external requirements document,

analyze the model for coverage in Simulink Coverage, incrementally increase coverage
with Simulink Design Verifier, and report the results.

17-9



17 Verification and Validation

Explore the Test Harness and the Model

1 Create a copy of the project in a working folder. At the command line, enter:

slVerificationCruiseStart
2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open('simulinkCruiseAddReqExample', 'SafetyTest Harnessl')

3 Load the test suite from “Test Model Against Requirements and Report Results”
(Simulink Test). At the command line, enter:

sltest.testmanager.load('slReqTests.mldatx")
sltest.testmanager.view

4 Open the test sequence block. The sequence tests:
* That the system disengages when the brake pedal is pressed
» That the system disengages when the speed exceeds a limit

Some test sequence steps are linked to a requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage
1 In the test manager, enable coverage collection for the test case.

Open the test manager. In the Simulink menu, click Analysis > Test Manager.
In the Test Browser, click the s1TReqTests test file.
Expand Coverage Settings.

Under COVERAGE TO COLLECT, select Record coverage for referenced
models.

e Under COVERAGE METRICS, select Decision, Condition, and MCDC.

e N T 9

17-10



Perform Functional Testing and Analyze Test Coverage

* COVERAGE SETTINGS

i)

VERA

(]

E TO COLLECT

1
[

Record coverage for system under test

+ | Record coverage for referenced models

COVERAGE METRICS

+| Decision + | Condition
« | MCDC Lookup Table
Signal Range Signal Size
Simulink Design Verifier Saturation on integer overflow

Relational Boundary

Run the test. On the test manager toolstrip, click Run.

When the test finishes, in the Test Manager, navigate to the test case. The aggregated
coverage results show that the example model achieves 50% decision coverage, 41%
condition coverage, and 25% MCDC coverage.

WN

~AGGREGATED COVERAGE RESULTS

ANALYZED MODEL REFORT CO... DECISION COMEITION MACEC +

[Pa] simulinkCruisesddregExample A 3 50%  — A1% - 25% mm

-
Add Tests for Missing Coverage Export

17-11



17 Verification and Validation

17-12

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage.
Select the test case in the Results and Artifacts and open the aggregated coverage
results section.

2 Select the test results from the previous section and then click Add Tests for
Missing Coverage.

The Add Tests for Missing Coverage options open.

3 Under Harness, choose Create a new harness.

4 Click OK to add tests to the test suite using Simulink Design Verifier.

5 Run the updated test suite. On the test manager toolstrip, click Run. The test results
include coverage for the combined test case inputs, achieving increased model
coverage.

See Also

Related Examples

“Link Tests to Requirements” (Simulink Test)

“Run-Time Assessments” (Simulink Test)

“Test Model Output Against a Baseline” (Simulink Test)
“Highlight Functional Dependencies” on page 16-2

“Generate Test Cases for Model Decision Coverage” on page 7-5
“Extend Model Coverage of a Test Case” (Simulink Test)



Analyze Code and Test Software-in-the-Loop

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview

Analyze code to detect errors, check standards compliance, and evaluate key metrics
such as length and cyclomatic complexity. Typically for handwritten code, you check for
run-time errors with static code analysis and run test cases that evaluate the code against
requirements and evaluate code coverage. Based on the results, refine the code and add
tests. For generated code, demonstrate that code execution produces equivalent results
to the model by using the same test cases and baseline results. Compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to
regenerate code.

Detailed model /

N . Add tests /
R ts p------- Traceability-- - - -—-- -
Fquirements al Refine model
T
\\_/:(’/"—‘\ :
Traceability |
N I
l :
Devel Code analysis Veri Its / Anal Report
Evelop or » Error detection #»  Run tests > enfy resuits > natyze » epo
generate code equivalence coverage results

Code metrics

[

h 4

Analyze Code for Defects, Metrics, and MISRA C:2012

This workflow describes how to check if your model produces MISRA® C:2012 compliant
code and how to check your generated code for code metrics, code defects, and MISRA
compliance. To produce more MISRA compliant code from your model, you use the code
generation and Model Advisor. To check whether the code is MISRA compliant, you use
the Polyspace MISRA C:2012 checker and report generation capabilities. For this
example, you use the model simulinkCruiseErrorAndStandardsExample. To open
the model:

1 Open the Simulink project:

slVerificationCruiseStart

17-13



17 Verification and Validation

2  From the Simulink project, open the model
simulinkCruiseErrorAndStandardsExample.

engaged

a ™\
(1) : P CruiseOnOff
-£ CruiseOnOff
CruiseOnOff
engaged
( 2 } P Brake hisi -Eengaged
—£ Brake
Brake w
:3 —£ Speed g
Speed
(4 ) P CoastSetSw
—£ CoastSetSw tspeed
CoastSetSw —E tspeed
(5 ) P AccelResSw
-£ AccelResS :
AccelResSw coeTessl \“L J’)

17-14

Compute target speed

Run Code Generator Checks

tspeed

Before you generate code from your model, there are steps that you can take to generate
code more compliant with MISRA C and more compatible with Polyspace. This example
shows how to use the Code Generation Advisor to check your model before generating

code.

1 Right-click Compute target speed and select C/C++ > Code Generation Advisor.
2 Select the Code Generation Advisor folder. Add the Polyspace objective. The MISRA

C:2012 guidelines objective is already selected.



Analyze Code and Test Software-in-the-Loop

Code Generation Objectives (System target file: ert.tic)

Available objectives Selected objectives - prioritized

Execution efficiency MISRA C:2012 guidelines
ROM efficiency Polyspace

RAM efficiency
Traceability
Safety precaution
Debugging

+

5

Click Run Selected Checks.

The Code Generation Advisor checks whether there are any blocks or configuration
settings that are not recommended for MISRA C:2012 compliance and Polyspace
code analysis. For this mode, the check for incompatible blocks passes, but there are
some configuration settings that are incompatible with MISRA compliance and
Polyspace checking.

v [C@ Code Generation Advisor
& Check model configuration settings against code generation objectives
o Check for blocks not recommended for MISRA C:2012

Click on check that was not passed. Accept the parameter changes by selecting
Modify Parameters.

Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code
more compliant with MISRA C and more compatible with Polyspace. This example shows
you how to use the Model Advisor to check your model further before generating code.

For more checking before generating code, you can also run the Modeling Guidelines for
MISRA C:2012.

I+

+

17-15



17 Verification and Validation

At the bottom of the Code Generation Advisor window, select Model Advisor.

Under the By Task folder, select the Modeling Guidelines for MISRA C:2012
advisor checks.

»  Model Advisor
[] I3 By Product
v [m] =) By Task

[m] [C5) Code Generation Efficiency

[] =3 Data Transfer Efficiency

[ ] 53 Frequency Response Estimation

[m] =) Managing Data Store Memory Blocks

[C=1 Managing Library Links And Variants

[] 53 Migrating to Simplified Initialization mode

[m] 55 Model Metrics

[m] =) Model Referencing

W [C=1 Modeling Guidelines for MISRA C:2012

=] Check configuration parameters for MISRA C:2012
=] Check for blocks not recommended for MISRA C:2012
:=| Check for unsupported block names
=] Check usage of Assignment blocks
=] “Check for bitwise operations on signed integers
(=] “Check for recursive function calls
=] “~Check for equality and ineguality operations on floating-point
=] “Check for switch case expressions without a default case

3 Click Run Selected Checks and review the results.

4 If any of the tasks fail, make the suggested modifications and rerun the checks until
the MISRA modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can now generate code. With
Polyspace, you can check your code for compliance with MISRA C:2012 and generate
reports to demonstrate compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ > Build
This Subsystem.

2 Use the default settings for the tunable parameters and select Build.

17-16



Analyze Code and Test Software-in-the-Loop

3  After the code is generated, right-click Compute target speed and select Polyspace >

Options.

"
@

* Commeonly Used Parameters

Select:
Solver
Data Import/Export
Optimization
Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Coverage
Design Verifier
Polyspace

Configuration Parameters: simulinkCruiseErrorAndStandardsExample/ModelReferencing (Active)

= All Parameters

Polyspace options (for Embedded Coder generated code)
Polyspace
Product mode: | Bug Finder
Settings from: | Project configuration and MISRA C 2012 checking for generated code
[ use custom project file
Project configuration: Configure
[] Enable additional file list  Select files
[[] stub lookup tables
Data Range Management
Input: Use spedified minimum and maximum values
Tunable parameters: | Use calibration data
Model reference
Model reference verification depth: | Current model only

Model by model verification

Output

Browse for project file

Output folder: ‘ results_$ModelName$

[1 Make output folder name unigue by adding a suffix
[[] Add results to current Simulink Project

Results review
Open results automatically after verification
Configuration checking

Check configuration before verification: |On (proceed with warnings)

OK

~ Check configuration

Cancel Help Apply

4  Click the Configure (Polyspace Bug Finder) button. This option allows you to choose
more advanced Polyspace analysis options in the Polyspace configuration window.

17-17




17 Verification and Validation

W Polyspace Bug Finder
File Edit Tools Window Help

&l “]Q|

simulinkCruis...Example_config =

=-Target & Compiler
Macros
- Environment Settings
----- Inputs & Stubbing
----- Multitasking
----- Bug Finder Analysis
----- Main Generator
----- Reporting
----- Distributed Computing
----- Advanced Settings

Coding Rules & Code Metrics

Coding Rules

[] Check MISRA C:2004 | required-rules
[] Check MISRA AC AGC| OBL-rules
[] Check MISRA C:2012 | mandatory-required

[] Check custom rules

Code Metrics

Edit
Edit
Edit

Edit

Calculate Code Metrics

5 On the same pane, select Calculate Code Metrics. This option turns on code metric
calculations for your generated code.

Save and close the Polyspace configuration window.
From your model, right-click Compute target speed and select Polyspace > Verify

Code Generated For > Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and

defect checks. You can see the progress of the analysis in the MATLAB Command
Window. Once the analysis is finished, the Polyspace environment opens.

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment

shows you the results of the static code analysis. There are 50 MISRA C:2012 coding rule
violations in your generated code.

17-18




Analyze Code and Test Software-in-the-Loop

Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or
object is local. As you click through the 8.7 violations, you can see that these results
refer to variables that other components also use, such as CruiseOn0ff. You can
annotate your code or your model to justify every result. But, because this model is a
unit in a larger program, you can also change the configuration of the analysis to

check only a subset of MISRA rules.

¥ Configuration | |¥] Result Details

{p] Dashboard | [¥] Source | (=] Output Summary

' Polyspace Bug Finder - Compute \\home-00-ah\mhaines\Documents\MATLAB\project: ples\cruise3\results Compute\Compute - O *
File Reporting Metrics Tools Window Help
& & 5> run @ stop | Q -
B2 Results 'W'S <
All results | T New .- <A 5> @ Showing 118/118 » Compute.c X 4 b8 ||®@
- - - - - - FOeIifE LOMpUTE_IN_ACCEL (TUINTE_I7 10 |
Family &F Information o Fle F Class <F Function =f Severity #define Compute IN CRUISE ((uints_T)10) P
[=-MISRA C:2012 49 @ #define Cu[rpabsiINicnast. ( cnn:;TJ 2u) @
2 Unused code 32 $define Compute IN NO ACTIVE CHILD ((uinte_T)0U)
4 Code design 2 #define Corrp'.:\:eill{iclﬂ; N ( t'.:in:37TJ 2U)
[=-8 Dedlarations and definitions 14 ) - - -
=-8.7 Functions and objects should not be defined with external inkage if they are referenced in only one translation unit. 14 #define Compuce IN_ON ({uinzg_T)10)
L T Category: Advisory Compute.c Global Scope File Scope #define Compute IN_STANDBY (({uintg_T)20)
Loe Category: Advisory Compute.c Global Scope File Scope #define Compute IN_Steady ({uintg T)30)
1% * Category: Advisory Compute.c Global Scope File Scope
.= *  Category: Advisory Compute.c Global Scope File Scope /* Block states (auto storage) */
Category Advisory Compute.c G\oba\scope File Scope W _Compute T EMFJEE DH;
- : mtegnry Advisory Computa c G\oba\s:opa F!Ie Scope /* Real-time model */
[ Category: Advisory Compute.c Global Scope File Scope v 7
: RT_MCDEL_Compute_T Compute M ;
8 2 E RT_MCDEL_Compute T *const Eumpuca M = cCompute M ;
&l Project Browser Results List - - - - -
v /* Exported data definition */
Variable trace Compute.c|
I Resuft Review /% Definitien for custem storage class: Global */
boolean T AccelResSw;
Severity : | | |Enter comment here... poolean T Brake;
Status ~ boolean T Emastﬁetﬁw;
boolean T GruiseOnOff:
~ MISRA C:2012 8.7 (Advisory) (2 uined T Speeds
Functions and objects should not be defined with external linkage if they are referenced in only one translation unit. boolean T engaged:
Variable ‘Compute_M' should have internal linkage. winte T rspeed;
/* Definition for custom storage class: Global */
uints_T Roldrate = 5U:
uinte_T Tncdec = 1o;
uints T maxtspeed = 90U;
v - v

In your model, right-click Compute target speed and select Polyspace > Options.
Set the Settings from (Polyspace Bug Finder) option to Project configuration.

This option allows you to choose a subset of MISRA rules in the Polyspace

configuration.
Click the Configure button.

select the check box Check MISRA C:2012 and from the drop-down list, select

In the Polyspace Configuration window, on the Coding Rules & Code Metrics pane,

17-19




17 Verification and Validation

single-unit-rules. Now, Polyspace checks only the MISRA C:2012 rules that are
applicable to a single unit.

¥ Polyspace Bug Finder O *
File Edit Tools Window Help
| & vl
onfiguratio =
simulinkCruis...Example_config x | 4 B
-Target & Compiler Coding Rules & Code Metrics
- Macros
‘- Environment Settings
----- Inputs & Stubbing
----- Multitasking Coding Rules
3 Coding Rules & Code Metrics [] Check MISRA C:2004 required-rules Edit
----- Bug Finder Analysis :
_____ Main Generator [] Check MISRA AC AGC OBL-rules Edit
----- Reporting Check MISRA C:2012 single-unit-rules Edit
----- Distributed Computin
. puting [] Use generated code requirements
----- Advanced Settings
[] Check custom rules Edit
Effective boolean types| Type 2 ¥ ':E:' .

boolean_T

Code Metrics

Calculate Code Metrics

Save and close the Polyspace configuration window.

7 Rerun the analysis with the new configuration.

When the Polyspace environment reopens, there are no MISRA results, only code
metric results. The rules Polyspace showed previously were found because the model
was analyzed by itself. When you limited the rules Polyspace checked to the single-
unit subset, no violations were found.

17-20




See Also

Family +f Information < File + Clad
--Code Metrics 69
+-Project Metrics 1
il-File Metrics 8
i Function Metrics 60

When this model is integrated with its parent model, you can add the rest of the MISRA
C:2012 rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code
metrics, you must export your results. This section shows you how to generate a report
after the analysis. If you want to generate a report every time you run an analysis, see
Generate report.

If they are not open already, open your results in the Polyspace environment.

From the toolbar, select Reporting > Run Report.

Select BugFinderSummary as your report type.

Click Run Report.

A W N =

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

See Also

Related Examples

. “Analyze Generated Code Using Polyspace Bug Finder” (Polyspace Bug Finder)
. “Test Two Simulations for Equivalence” (Simulink Test)
. “Export Test Results and Generate Reports” (Simulink Test)

17-21



17 Verification and Validation

Module Verification and Testing Processor-in-the-Loop

Module Verification and Testing Processor-in-the-Loop
Overview

Module verification involves testing and analyzing code at a system level, integrating
generated code from your model, handwritten code, and legacy code. Module verification
often includes generating code that executes on a target object, rather than the desktop
environment. Analyze the code to resolve errors and evaluate key metrics. Test the
integrated system using new requirements-based tests and system-level tests from your
model. Collect coverage on these tests and add tests to meet coverage targets.

Detailed model
and/or
reguirements | Tt
: 1
Traceability ! |
. I
1 ! |
) Test Code analysis:
Integrate unit- » Create PIL »| integrated Coverage v—»| * Error detaction Report
level code test cases code target met? * Code metrics results
1 Y
i N
! Add test 4—‘
Code unit 1 Bt
Refine |
Code unitn code
See Also
Related Examples
. “Test Two Simulations for Equivalence” (Simulink Test)

. “Analyze Generated Code Using Polyspace Bug Finder” (Polyspace Bug Finder)

17-22



Test a Model in Real Time

Test a Model in Real Time

Real-Time Testing and Testing Production Models Overview

Real-time testing assesses the system while including the effects of timers, physical
signals, and target hardware. Sweep through parameter values on the target, verify
system operation during execution, and verify expected results in the desktop
environment. Systems that have been verified on target hardware often exist in a change-
controlled state. You can test these systems without modifying them by using isolated
simulation and analysis environments.

Requi N Model or code
equiremeants Test cases Resolve failures

____________________

] . Compare results to
Add real-time g Deploy to real-time > Execute tests | expected outputs » Report results
test cases target computer . .
and PIL simulation

Related Examples

. “Create and Run Real-Time Application from Simulink Model” (Simulink Real-Time)
. “Test Models in Real Time” (Simulink Test)
. “Run-Time Assessments” (Simulink Test)

17-23






Glossary

abstraction

analysis model

assumption

block replacement rule

component verification

condition coverage

constraint

counterexample

coverage objective

The process of ignoring certain aspects of model behavior
that do not affect the test objective or property under
investigation.

The target model for a Simulink Design Verifier analysis. If
you select an atomic subsystem for analysis, the analysis
model is generated by extracting the subsystem to a new
model.

A property that is assumed to be true during a property
proof. The proof result holds only when the assumption is
true.

A rule that is registered with Simulink Design Verifier and
defines how instances of specific blocks are replaced by an
alternate implementation. The software uses MATLAB
commands to define when and how to apply a block
replacement rule (see “Define Custom Block
Replacements” on page 4-9).

The process of verifying an individual components in a
model. You can verify a component within the execution
context of the model, or independently of its parent model.

Measures the percentage of the total number of logic
conditions associated with logical model objects that the
simulation actually exercised. Enabling condition coverage
causes every decision and condition coverage outcome to
be enabled. See “Types of Model Coverage” (Simulink
Coverage).

A property that is forced to be true during test case
generation.

A test case that demonstrates a property violation.

A test objective that defines when a coverage point results
in a particular outcome.

Glossary-1



Glossary

coverage point

decision coverage

floating-point
approximation

invalid test case

modified condition/
decision coverage
(MCDC)

nonlinear arithmetic

Glossary-2

A decision, condition, or MCDC expression associated with
a model object. Each coverage point has a fixed number of
mutually exclusive outcomes.

Measures the percentage of the total number of
simulation paths through model objects that the
simulation actually traversed. Decision coverage is a
subset of modified decision/condition coverage. See
“Types of Model Coverage” (Simulink Coverage).

The process of approximating floating-point numbers
using rational numbers (i.e., fractions whose numerator
and denominator are small integers). The Simulink Design
Verifier software performs floating-point approximations
during its analysis. It can generate invalid test cases that
result from numerical differences. For example, given a
large enough floating-point number X, the expression
x==(x+1) can be true; however, this expression never
holds if x is a rational number.

A test case that does not satisfy its objectives.

Measures the independence of logical block inputs and
transition conditions associated with logical model objects
during the simulation. When you set the coverage
objective to MCDC, Simulink Design Verifier automatically
enables every coverage objective for decision coverage
and condition coverage as well.

Note that MCDC test cases are not generated for XOR
configured logic operators. You can achieve MCDC by
using the same tests that would be generated from AND
configured blocks or OR configured blocks.

See “Types of Model Coverage” (Simulink Coverage).

A computation in the model that cannot be expressed as a
combination of mutually exclusive linear expressions.
Nonlinear arithmetic can affect a property or test
objective, and it can cause the analysis to return an error.
In this case, you should apply simplifying approximations
and abstractions.



Glossary

property

property violation

test case

test harness

test objective

Test Objective block

unsatisfiable test
objective

validated property

A logical expression of the signals and data values, within
a model, that is intended to be proven true during
simulation. Properties evaluate at specific points in the
model.

The condition during a simulation when a property is
false.

A sequence of numeric values and input data time that you
input to a model during its simulation.

A model that runs test cases on an analysis model.

A logical expression of the signals and data values, within
a model, that is intended to be true at least once in the
resulting test case during simulation. Test objectives
evaluate at specific points in the model.

The block that you add to a model to define test objectives.
In the block mask, define test objectives as values or
ranges that an input signal must satisfy during a test case.

The status of a test objective that indicates a test case
cannot be generated for the specified approximations.
This includes floating-point approximations and maximum-
step limitations specified in the Design Verifier > Test
Generation pane of the Configuration Parameters dialog
box.

The status of a property that indicates no counterexample
exists, subject to floating-point approximations and the
settings specified in the Property Proving pane of the
Configuration Parameters dialog box.

Glossary-3






